A series of Keggin-based compounds constructed by

conjugate ring-riched pyrazine and quinoxaline derivatives

Aixiang Tian,* Yan Tian, Yali Ning, Xue Hou, Huaiping Ni, Xuebin Ji, Guocheng Liu,

Jun Ying*

Department of Chemistry, Bohai University, Jinzhou 121013, P. R. China

Fig. S1. The supramolecular 3D network of 1 linked by intermolecular weak interactions between layers.

Fig. S2. View of 1D Ag- L^2 line in 3.

Fig. S3. The 3D supramolecular structure of 3 connected by intermolecular force.

Fig. S4. The 1D wave-like $Ag-L^2$ chain of compound 4.

Fig. S5. The 2D grid-like metal-organic layer of compound 4.

Fig. S6. The 1D wave-like Cu-L² line of compound 5.

Fig. S7. The tetrabutyl ammonium ions accommodated in the grid of the layer for compound 4.

Fig. S8. The IR spectra of compounds 1–5.

Fig. S9. The simulative (a), experimental (b) and recycled after photocatalysis (c for MB and d for RhB) powder X-ray diffraction patterns for compounds 1–5.

Fig. S10. The cyclic voltammograms of the 4–CPE in $0.1M H_2SO_4 + 0.5M Na_2SO_4$ aqueous solution at different scan rates (from inner to outer: 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450 and 500 mV·s⁻¹, respectively.).

Fig. S11. The cyclic voltammograms of the 1–CPE and 3–CPE in $0.1M H_2SO_4 + 0.5M Na_2SO_4$ aqueous solution at different scan rates (from inner to outer: 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450 and 500 mV·s⁻¹, respectively.).

Fig. S12. The dependence of anodic peak (II) and cathodic peak (II') currents of **1–5–** CPE on scan rates.

Fig. S13. Absorption spectra of the RhB solution during the decomposition reaction under UV irradiation with the compounds **1–5** as the catalysts.

Fig. S14. The recycle test of catalysts 1–5.

compound 1						
O(4)-Ag(1)	2.475(8)	Ag(1)-N(1)	2.286(9)			
Ag(1)-O(1W)	2.33(2)	Ag(1)-O(1W')	2.33(3)			
Ag(2)-N(2)	2.173(9)	Ag(2)-N(2)#2	2.173(9)			
Mo(6)-O(4)-Ag(1)	134.4(5)	N(1)-Ag(1)-O(1W)	124.7(7)			
N(1)-Ag(1)-O(1W')	145.9(7)	O(1W)-Ag(1)-O(1W')	35.7(10)			
N(1)-Ag(1)-O(4)	98.2(3)	O(1W)-Ag(1)-O(4)	136.8(7)			
O(1W')-Ag(1)-O(4)	104.8(9)	N(2)-Ag(2)-N(2)#2	179.999(1)			
C(2)-N(1)-Ag(1)	122.1(7)	C(4)-N(1)-Ag(1)	118.9(8)			
C(1)-N(2)-Ag(2)	119.5(8)	C(3)-N(2)-Ag(2)	120.9(7)			
O(1W')-O(1W)-Ag(1)	72.4(17)	O(1W')#3-O(1W')-Ag(1)	138(4)			
O(1W)-O(1W')-Ag(1)	72.0(14)					
Symmetry transformations used to generate equivalent atoms for 1: #1 -x+1,-y+1,-z-2; #2 -x,-y+1,-z-1; #3 -x,-						
y+2,-z-2						
compound 2						
Ag(1)-N(1)	2.187(9)	Ag(1)-N(3)	2.265(9)			
Ag(1)-O(15)	2.511(8)	Ag(2)-N(5)	2.311(10)			
Ag(2)-N(4)	2.311(10)	N(2)-Ag(4)#1	2.228(9)			
Ag(3)-N(6)	2.265(10)	Ag(3)-N(7)	2.307(10)			
Ag(4)-N(2)#2	2.228(9)	Ag(4)-N(8)	2.257(9)			
Ag(4)-N(9)	2.496(12)	N(1)-Ag(1)-N(3)	142.9(3)			
N(1)-Ag(1)-O(15)	104.1(3)	N(3)-Ag(1)-O(15)	97.4(3)			
C(4)-N(1)-Ag(1)	123.7(7)	C(1)-N(1)-Ag(1)	117.5(7)			
N(5)-Ag(2)-N(4)	130.8(3)	C(3)-N(2)-Ag(4)#1	118.8(8)			
C(2)-N(2)-Ag(4)#1	123.1(8)	N(6)-Ag(3)-N(7)	139.6(4)			
C(20)-N(3)-Ag(1)	124.5(8)	C(17)-N(3)-Ag(1)	113.9(7)			
N(2)#2-Ag(4)-N(8)	152.9(4)	N(2)#2-Ag(4)-N(9)	91.8(4)			
N(8)-Ag(4)-N(9)	112.6(4)	C(18)-N(4)-Ag(2)	116.0(8)			
C(19)-N(4)-Ag(2)	124.0(8)	C(33)-N(5)-Ag(2)	119.1(8)			

Table S1. Selected bond distances (Å) and angles (deg) for compounds 1-5.

Supplementary Material (ESI) for Dalton Transac	tions
This journal is © The Royal Society of Chemistry	

C(36)-N(5)-Ag(2)	123.2(8)	C(35)-N(6)-Ag(3)	122.2(8)			
C(34)-N(6)-Ag(3)	117.5(8)	C(52)-N(7)-Ag(3)	122.5(8)			
C(49)-N(7)-Ag(3)	114.1(8)	C(51)-N(8)-Ag(4)	122.6(8)			
C(50)-N(8)-Ag(4)	119.1(8)	C(65)-N(9)-Ag(4)	115.8(9)			
C(68)-N(9)-Ag(4)	123.8(11)	Mo(5)-O(15)-Ag(1)	113.7(4)			
Symmetry transformations used to generate equivalent atoms for 2: #1 x+1,y,z+1; #2 x-1,y,z-1						
compound 3						
Ag(1)-N(1)	2.139(3)	Ag(1)-N(6)#1	2.151(3)			
Ag(2)-N(3)	2.194(3)	Ag(2)-N(2)	2.204(3)			
Ag(3)-N(4)	2.223(3)	Ag(3)-N(5)	2.228(3)			
N(6)-Ag(1)#4	2.151(3)	N(1)-Ag(1)-N(6)#1	168.1(13)			
C(8)-N(1)-Ag(1)	127.4(3)	C(1)-N(1)-Ag(1)	114.2(3)			
N(3)-Ag(2)-N(2)	138.3(11)	C(2)-N(2)-Ag(2)	116.6(3)			
C(3)-N(2)-Ag(2)	121.3(3)	N(4)-Ag(3)-N(5)	147.5(11)			
C(21)-N(3)-Ag(2)	119.3(3)	C(28)-N(3)-Ag(2)	120.8(2)			
C(22)-N(4)-Ag(3)	118.1(3)	C(23)-N(4)-Ag(3)	122.6(3)			
C(41)-N(5)-Ag(3)	118.3(2)	C(48)-N(5)-Ag(3)	121.9(2)			
C(42)-N(6)-Ag(1)#4	117.3(3)	C(43)-N(6)-Ag(1)#4	122.1(2)			
Symmetry transformations	used to generate equivalent a	toms for 3 : #1 x-1,y+1,z; #2 ·	-x,-y+2,-z+1; #3 -x+1,-y+2,-			
z+2; #4 x+1,y-1,z						
	Comp	ound 4				
Ag(1)-N(1)	2.167(4)	Ag(1)-N(2)#1	2.173(4)			
Ag(1)-O(3)	2.505(4)	N(2)-Ag(1)#3	2.173(4)			
N(1)-Ag(1)-N(2)#1	154.65(17)	N(1)-Ag(1)-O(3)	94.99(16)			
N(2)#1-Ag(1)-O(3)	110.33(16)	C(1)-N(1)-Ag(1)	122.0(3)			
C(8)-N(1)-Ag(1)	119.3(3)	C(2)-N(2)-Ag(1)#3	119.7(3)			
C(3)-N(2)-Ag(1)#3	120.3(4)	Mo(4)-O(3)-Ag(1)	123.4(2)			
Symmetry transformations	used to generate equivalent	atoms for 4: #1 -x+1/2,y+1	/2,-z+3/2; #2 -x,-y+2,-z+2;			
#3 -x+1/2,y-1/2,-z+3/2						
	Comp	ound 5				
Cu(1)-N(1)	1.918(2)	Cu(1)-N(3)	1.932(2)			
Cu(2)-N(5)	1.908(3)	Cu(2)-N(4)	1.920(2)			
N(2)-Cu(3)	1.889(3)	Cu(3)-N(6)#3	1.908(3)			
N(6)-Cu(3)#4	1.908(3)	N(1)-Cu(1)-N(3)	160.3(12)			
C(2)-N(1)-Cu(1)	114.1(2)	C(1)-N(1)-Cu(1)	126.6(2)			
N(5)-Cu(2)-N(4)	165.4(14)	C(3)-N(2)-Cu(3)	117.3(2)			
C(4)-N(2)-Cu(3)	122.5(2)	C(22)-N(3)-Cu(1)	117.5(2)			
C(21)-N(3)-Cu(1)	121.9(2)	N(2)-Cu(3)-N(6)#3	177.9(12)			
C(23)-N(4)-Cu(2)	116.3(2)	C(24)-N(4)-Cu(2)	123.1(2)			
C(42)-N(5)-Cu(2)	116.4(2)	C(41)-N(5)-Cu(2)	123.4(3)			
C(43)-N(6)-Cu(3)#4	115.2(2)	C(44)-N(6)-Cu(3)#4	122.8(2)			
Symmetry transformations used to generate equivalent atoms for 5: #1 -x+1,-y+1,-z+1; #2 -x+2,-y,-z; #3						
x+1,y+1,z; #4 x-1,y-1,z						