Electronic Supplementary Information

for

Syntheses and crystal structures of benzene-sulfonate and -carboxylate copper polymers and their application to oxidation of cyclohexane in ionic liquid under mild conditions

Susanta Hazra,^{*a*} Ana P. C. Ribeiro,^{*a*} M. Fátima C. Guedes da Silva,^{*a*} Carlos A. Nieto de Castro^{*b*} and Armando J. L. Pombeiro*^{*a*}

^{*a*} Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. E-mail: pombeiro@tecnico.ulisboa.pt

^b Centro de Química Estrutural, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa, Portugal

1				
Cu1–N1	2.0230(18)	N1-Cu1-O21	177.08(7)	
Cu1–N2	1.9928(18)	N2-Cu1-O11	167.31(7)	
Cu1–O11	1.9571(15)	013 ^{<i>i</i>} –Cu1–N1	89.77(6)	
Cu1–O21	1.9560(14)	013 ^{<i>i</i>} –Cu1–N2	98.15(7)	
Cu1–O13 ^{<i>i</i>}	2.3432(16)	013 ^{<i>i</i>} –Cu1–O11	93.05(6)	
		O13 ^{<i>i</i>} –Cu1–O21	90.31(6)	
		N1–Cu1–N2	81.91(7)	
		N1-Cu1-O11	92.22(7)	
		N2-Cu1-O21	95.20(7)	
		O11–Cu1–O21	90.69(6)	
		2		
Cu1–N1	1.9743(16)	N1-Cu1-O1	166.53(7)	
Cu1–N2	2.0126(15)	N2Cu1O4	177.18(6)	
Cu1–O1	1.9518(14)	O4 ^{<i>ii</i>} –Cu1–N1	98.87(6)	
Cu1–O4	1.9603(12)	O4 ^{<i>ii</i>} –Cu1–N2	105.37(6)	
Cu1–O4 ^{<i>ii</i>}	2.2480(12)	O4 ^{<i>ii</i>} –Cu1–O1	94.50(6)	
		O4 ^{<i>ii</i>} –Cu1–O4	77.44(5)	
		N1–Cu1–N2	82.18(7)	
		N1–Cu1–O4	97.25(6)	
		N2-Cu1-O1	92.69(6)	
		O1–Cu1–O4	87.26(6)	

^{*a*} Symmetry codes as in Figures 1 (for 1) and 2 (for 2).

Compound	D–H····A	D····A	Н…А	D–H···A	Symmetry codes
1	O23–H23O…O26'	2.676(2)	1.745(18)	176(3)	x, 3/2–y, -1/2+z
	O25-H25O···O22'	2.615(2)	1.705(18)	164(3)	-x, 1/2+y, 1/2-z
2	O6–H60····O10'	2.542(3)	1.79(3)	173(3)	-x, 1-y, -z
	08–H8A…O5'	2.836(2)	2.03(4)	162(4)	1-x, 1-y, 1-z
	O8–H8B…O5'	2.805(3)	2.04(5)	150(4)	-1+x, y, z
	O9–H9A…O11	2.780(4)	1.90(5)	170(4)	
	O9–H9B…O7'	3.112(3)	2.38(6)	142(5)	1+x, y, -1+z
	O10–H10A…O2'	2.754(3)	1.90(5)	174(4)	-x, 1-y, -z
	O10–H10B…O9'	2.757(4)	1.98(4)	165(4)	-1+x, y, z
	O11–H11B…O3'	2.914(4)	2.15(6)	164(6)	1+x, y, z
	O11–H11B····O8'	2.985(5)	2.08(5)	169(4)	1-x, 1-y, 1-z

Table S2. Hydrogen bond interactions [distances in Å and angles in °] in $[CuL(H_2tma)]_n$ (1) and $[{Cu_2L_2(H_2pma)} \cdot 8H_2O]_n$ (2).

Products Yields (%) ^b			Total	[CvOH]/	Original	
Entry	СуОН	СуО	Total	TON°	[CyO] ^d	level of activity (%)
Catalyst 1						
1	29.3	6.7	36.0	83	4.4	100
2	28.7	6.3	35.0	81	4.6	97.2
3	28.9	6.4	35.3	81	4.5	98.1
Catalyst 2						
4	26.0	3.0	29.0	67	8.7	100
5	26.1	2.8	28.9	66	9.3	99.7
6	25.9	2.9	28.8	66	8.9	99.3

Table S3. Effect of catalysts recycling for the peroxidative oxidation of cyclohexane in the ionic liquid $[bmim][PF_6]$.^a

^a Reaction conditions, unless stated otherwise: $[catalyst] = 3 \times 10^{-3} \text{ molL}^{-1}$, $[cyclohexane]_0 = 0.46 \text{ molL}^{-1}$, $[total H_2O_2]_0 = 2.2 \text{ molL}^{-1}$ (50% aqueous), $[bmim][PF_6]$ up to 5 mL total volume, 30 °C, reaction time = 120 min. ^b Based on GC analysis, after treatment with PPh₃. ^c Total (cyclohexanol+cyclohexanone) turnover number (moles of product per mol of catalyst). ^d Ratio between the concentrations of cyclohexanol (CyOH), and cyclohexanone (CyO).

	1	2
Formula	C ₂₁ H ₁₄ CuN ₂ O ₉ S	C ₁₇ H ₁₉ CuN ₂ O ₁₁ S
Formula weight	533.94	522.94
Crystal colour	Green	Green
Crystal system	Monoclinic	Triclinic
Space group	$P2_1/c$	<i>P</i> 1
a/Å	14.8737(5)	9.4867(3)
b/Å	8.9886(2)	10.6290(4)
c/Å	15.5407(5)	11.8068(5)
α/°	90.00	98.625(2)
β°	98.3790(10)	92.974(2)
γ/°	90.00	116.1420(10)
V/Å ³	2055.52(12)	1047.28(7)
Ζ	4	2
2 <i>θ/</i> °	5.25-52.80	4.81–57.18
μ (Mo K α)/mm ⁻¹	1.225	1.206
$\rho_{\rm calcd}/{\rm g}~{\rm cm}^{-3}$	1.725	1.658
F(000)	1084	536
Index ranges	-18 <h<18< td=""><td>-12<h<12< td=""></h<12<></td></h<18<>	-12 <h<12< td=""></h<12<>
	-11 <k<11< td=""><td>-14<<i>k</i><14</td></k<11<>	-14< <i>k</i> <14
	-19<1<19	-15< <i>l</i> <15
Reflections collected	21481	34577
Independent reflections	4215	5345
R _{int}	0.0281	0.0325
R_1^{a}/WR_2^{b} [I > 2 σ (I)]	0.0337/0.0838	0.0361/0.0874
R_1^{a}/WR_2^{b} [for all F_0^{2}]	0.0409/0.0884	0.0469/0.0929
GOF on F^2	1.094	1.094

 $\label{eq:constant} \textbf{Table S4}. \ Crystallographic \ data \ for \ [CuL(H_2tma)]_n \ \textbf{(1)} \ and \ [\{Cu_2L_2(H_2pma)\}\cdot 8H_2O]_n \ \textbf{(2)}.$

Fig. S1. Arbitrary view of the 3D motif in **1** resulting from the H-bond interactions depicted in Table S2.

Fig. S2. H-bonding interactions in compound **2**. Symmetry codes to generate equivalent atoms: Symmetry: *i*) 3-x, 2-y, 1-z; *ii*) 2-x, 2-y, 1-z; *iii*) 1+x, y, z, *iv*) 1-x, 1-y, 1-z; *v*) 1+x, y, 1+z; *vi*) -x, 1-y, 1-z; *vii*) -1+x, y, z; *viii*) -1+x, y, -1+z.

Fig. S3. Arbitrary view of the 3D motif in **2** resulting from the H-bond interactions depicted in Table S2.

Fig. S4. Accumulation of oxygenates [total concentration (mmol L⁻¹) of cyclohexanol and cyclohexanone, after treatment with PPh₃] along the time in the oxidation of cyclohexane by H_2O_2 , catalysed by complex 1 in the presence and in the absence of pyridine as additive. Reaction conditions: $[1]_0 = 2 \times 10^{-3} \text{ mol } \text{L}^{-1}$, $[py]_0 = 0.005 \text{ mol } \text{L}^{-1}$, $[total H_2O]_0 = 4.2 \text{ mol } \text{L}^{-1}$, $[H_2O_2]_0 = 2.2 \text{ mol } \text{L}^{-1}$ (50 % aqueous), $[cyclohexane]_0 = 0.46 \text{ mol } \text{L}^{-1}$, CH_3CN up to 5 mL total volume, 40 °C.

Fig. S5. Accumulation of oxygenates [total concentration (mmol L⁻¹) of cyclohexanol and cyclohexanone, after treatment with PPh₃] along the time in the oxidation of cyclohexane by H₂O₂, catalysed by complex **2** in the presence and in the absence of pyridine as additive. Reaction conditions: $[\mathbf{2}]_0 = 2 \times 10^{-4} \text{ mol } \text{L}^{-1}$, $[\text{PY}]_0 = 0.005 \text{ mol } \text{L}^{-1}$, $[\text{total } \text{H}_2\text{O}]_0 = 4.2 \text{ mol } \text{L}^{-1}$, $[\text{H}_2\text{O}_2]_0 = 2.2 \text{ mol } \text{L}^{-1}$ (50 % aqueous), $[\text{cyclohexane}]_0 = 0.46 \text{ mol } \text{L}^{-1}$, CH_3CN up to 5 mL total volume, 40 °C.

А

Fig. S6. Accumulation of oxygenates [total concentration (mmol L⁻¹) of cyclohexanol (CyOH, Alc) and cyclohexanone (CyO, Keto), after treatment with PPh₃] along the time in the oxidation of cyclohexane by H₂O₂, catalysed by complex **1** in the absence (plot **A**) or in the presence (plot **B**) of pyridine additive. Reaction conditions: $[1]_0 = 2 \times 10^{-3} \text{ mol } \text{L}^{-1}$, $[Py]_0 = 0.005 \text{ mol } \text{L}^{-1}$, $[total H_2O]_0 = 4.2 \text{ mol } \text{L}^{-1}$, $[H_2O_2]_0 = 2.2 \text{ mol } \text{L}^{-1}$ (50 % aqueous), $[cyclohexane]_0 = 0.46 \text{ mol } \text{L}^{-1}$, CH_3CN up to 5 mL total volume, 40 °C.

Α

Fig. S7. Accumulation of oxygenates [total concentration (mmol L⁻¹) of cyclohexanol (CyOH, Alc) and cyclohexanone (CyO, Keto), after treatment with PPh₃] along the time in the oxidation of cyclohexane by H₂O₂, catalysed by complex **2** in the absence (plot **A**) or in the presence (plot **B**) of pyridine additive. Reaction conditions: $[\mathbf{2}]_0 = 2 \times 10^{-4} \text{ mol } \text{L}^{-1}$, $[\text{Py}]_0 = 0.005 \text{ mol } \text{L}^{-1}$, $[\text{total } \text{H}_2\text{O}]_0 = 4.2 \text{ mol } \text{L}^{-1}$, $[\text{H}_2\text{O}_2]_0 = 2.2 \text{ mol } \text{L}^{-1}$ (50 % aqueous), $[\text{cyclohexane}]_0 = 0.46 \text{ mol } \text{L}^{-1}$, CH_3CN up to 5 mL total volume, 40 °C.

B

Fig. S8. UV-Vis spectra of catalyst 1 (A) and catalyst 2 (B), during 1h reaction, at room temperature. The dash line represents the catalyst and the full line is the addition of H_2O_2 to the catalyst, as a function of time.