Electronic Supplementary Information (ESI)

R/X Exchange Reactions on Pd and Pt Complexes Containing Phosphine Ligands, *cis*- $[M(R)_2{P(X)(NMeCH_2)_2}_2]$ (M = Pd, Pt), *via* a Phosphenium Intermediate and Theoretical Approach

Masumi Itazaki,*a Noriko Tsuchida,^{b,c} Yuka Shigesato,^a Keiko Takano^b and Hiroshi Nakazawa*a

^aDepartment of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan

^bDepartment of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan

^cPresent address: Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan

Table of Contents	
General	S2
Synthesis	S2-S7
X-ray crystallography measurements	S8-S10
Calculation Section	
path A: via metallaphophorane	S11-S12
path B: via oxidative addition	S13-S20
path C: via phosphenium	S21-S26
Cl ⁻ elimination from Pt complex	
Molecular orbital change for the Me migration	
Coordinates of the Optimized geometries at B3PW91/BS2 for path C	S26-S33
Coordinates of the Optimized geometries at B3PW91/BS1 for path B	S33-S38
Coordinates of the Optimized geometries at B3PW91-D3/BS2 for path C	S38-S42
References	S43

General: All reactions were carried out under an atmosphere of dry nitrogen by using standard Schlenk tube techniques. Benzene and hexane were distilled from sodium metal and were stored under a nitrogen atmosphere. CH₃CN and CH₂Cl₂ were distilled from CaH₂ under dry nitrogen prior to use. Pd(Me)₂(cod),¹ Pt(R)₂(cod) (R = Me,² Et,² Ph,² *p*-tol,³ *p*-CF₃Ph⁴), Pt(I)₂(cod),⁵ and P(X)(NMeCH₂)₂ (X = Cl: **1a**⁶, Br: **1b**⁷) were synthesized according to the reported procedures. NMR spectra (¹H, ¹³C, ¹⁹F and ³¹P) were measured on a JEOL JNM-AL400 spectrometer at 25 °C. ¹H and ¹³C NMR data were referred to residual peaks of solvent as an internal standard. Peak positions of ¹⁹F{¹H} and ³¹P{¹H} NMR spectra were referenced to external CFCl₃ and 85% H₃PO₄, respectively.

Synthesis: Synthesis of *cis*-[Pd(Cl)₂{P(Me)(NMeCH₂)₂}₂] (2). A hexane solution (10 mL) of a palladium complex Pd(Me)₂(cod), which was prepared by a reaction of Pd(I)₂(cod) (1.405 g, 3.0 mmol) with 2 equiv of MeMgBr *in situ*, was slowly added to a hexane solution (2 mL) of **1a** (1.091 g, 7.05 mmol) at room temperature. The mixture was stirred for 10 min at room temperature. Volatile materials were removed under reduced pressure, and the resulting residue was washed with hexane (2 mL × 3), collected by filtration, and dried in *vacuo* to give a yellow solid of **2** (382.6 mg, 0.866 mmol, 29%). Single-crystals of **2** were obtained by solvent diffusion over a few days from a CH₂Cl₂ layer containing **2** and an overlayer of hexane. ¹H NMR (400.0 MHz, CDCl₃, δ , ppm, r.t.); 1.87 (apparent t, ²⁺⁴J_{PH} = 4.9 Hz, 6H, PMe), 2.74 (apparent t, ³⁺⁵J_{PH} = 6.4 Hz, 12H), NMe), 3.11 (dt, ³J_{PH} = 6.8 Hz, ³J_{HH} = 6.8 Hz, 4H, NCH₂), 3.16-3.22 (m, 4H, NCH₂). ¹³C{¹H} NMR (100.4 MHz, CDCl₃, δ , ppm, r.t.); 21.04 (apparent t, ¹⁺³J_{PC} = 14.1 Hz, PMe), 34.17 (apparent t, ²⁺⁴J_{PC} = 5.0 Hz, NMe), 51.28 (s, NCH₂). ³¹P{¹H} NMR (161.7 MHz, CDCl₃, δ , ppm, r.t.); 108.15 (s). Elemental Analysis. Calcd. for C₁₀H₂₆Cl₂N₄P₂Pd: C, 27.20; H, 5.93; N, 12.69; Found: C, 26.79; H, 5.81; N, 12.59%.

Synthesis of *cis*-[Pt(Me)₂{P(Cl)(NMeCH₂)₂}₂] (3a). A mixture of 1a (298.0 mg, 1.953 mmol) and Pt(Me)₂(cod) (325.5 mg, 0.977 mmol) in hexane (5 mL) was stirred for 10 min at room temperature. Volatile materials were removed under reduced pressure, and the resulting residue was washed with hexane (2 mL × 3) at -40 °C, collected by filtration, and dried in *vacuo* to give a gray solid of 3a (440.9 mg, 0.835 mmol, 85%). Single-crystals of 3a were obtained by solvent diffusion over a few days from a benzene layer containing Pt(Me)₂(cod) and 1a and an overlayer of hexane. ¹H NMR (400 MHz, C₆D₆, δ , ppm): 1.52 (apparent t, ³*J*_{PH} = 10.8 Hz, *J*_{PtH} = 71.9 Hz, 6H, PtMe), 2.47 (d, ³*J*_{PH} = 14.4 Hz, 12H, NMe), 2.60-2.62 (m, 2H, NCH₂), 2.64-2.65 (m, 2H, NCH₂), 2.69-2.70 (m, 4H,

NCH₂). ¹³C{¹H} NMR (100.4 MHz, C₆D₆, δ , ppm): 8.42 (dd, ²*J*_{PC} = 9.9, 142.5 Hz, *J*_{PtC} = 751.2 Hz, PtMe), 33.0 (apparent t, ²⁺⁴*J*_{PC} = 5.0 Hz, NMe), 51.05 (apparent t, ²⁺⁴*J*_{PC} = 3.3 Hz NCH₂). ³¹P{¹H} NMR (161.9 MHz, C₆D₆, δ , ppm): 155.18 (s, *J*_{PtP} = 2373 Hz). Elemental Analysis. Calcd. For C₁₀H₂₆Cl₂N₄P₂Pt: C, 22.65; H, 4.94; N, 10.57; Found: C, 22.91; H, 5.02; N, 10.16%.

Synthesis of *cis*-[Pt(Et)₂{P(Cl)(NMeCH₂)₂}] (3b). A hexane solution (7 mL) of Pt(Et)₂(cod) (398.6 mg, 1.103 mmol) was added to **1a** (340.5 mg, 2.206 mmol) at room temperature. The mixture was stirred for 30 min at room temperature. The solvent was removed by filtration, and the resulting residue was washed with hexane (2 mL × 3), collected by filtration, and dried in *vacuo* to give a yellow solid of **3b** (317.7 mg, 0.569 mmol, 51%). ¹H NMR (400 MHz, C₆D₆, δ, ppm): 1.68 (dt, ⁴*J*_{PH} = 14.4 Hz, ³*J*_{HH} = 7.2 Hz, *J*_{PtH} = 76.3 Hz, 6H, PtCH₂CH₃), 2.23 (m, *J*_{PtH} = 73.9 Hz, 4H, PtCH₂CH₃), 3.46 (d, ³*J*_{PH} = 15.6 Hz, 12H, NMe), 2.64-2.70 (m, 4H, NCH₂), 2.71-2.74 (m, 4H, NCH₂). ¹³C{¹H} NMR (100.4 MHz, C₆D₆, δ, ppm): 16.90 (d, ³*J*_{PC} = 6.6 Hz, *J*_{PtC} = 29.9 Hz, PtCH₂CH₃), 22.61 (dd, ²*J*_{PC} = 139.6, 9.0 Hz, *J*_{PtC} = 676.0 Hz, PtCH₂CH₃), 32.95 (d, ²*J*_{PC} = 12.4 Hz, NMe), 51.05 (d, ²*J*_{PC} = 8.3 Hz NCH₂). ³¹P{¹H} NMR (161.9 MHz, C₆D₆, δ, ppm): 159.56 (s, *J*_{PtP} = 2039 Hz). Elemental Analysis. Calcd. For C₁₂H₃₀Cl₂N₄P₂Pt: C, 25.81; H, 5.42; N, 10.03; Found: C, 23.88; H, 5.30; N, 9.67%.

Synthesis of *cis*-[Pt(Ph)₂{P(Cl)(NMeCH₂)₂]₂] (3c). A mixture of 1a (270.3 mg, 1.772 mmol) and Pt(Ph)₂(cod) (404.8 mg, 0.885 mmol) in benzene (5 mL) was stirred for 30 min at room temperature. Volatile materials were removed under reduced pressure, and the resulting residue was washed with hexane (2 mL × 3), collected by filtration, and dried in *vacuo* to give a white powder of 4c (492.9 mg, 0.753 mmol, 85%). ¹H NMR (400 MHz, C₆D₆, δ , ppm): 2.40-2.44 (m, 4H, NCH₂), 2.52-2.57 (d, ³J_{PH} = 15.6 Hz, 16H, 12H of NMe and 4H of NCH₂), 6.89 (t, ³J_{HH} = 7.6 Hz, 2H, *p*-Ph), 7.09 (t, ³J_{HH} = 6.8 Hz, 4H, *m*-Ph), 7.48 (t, ³J_{HH} = 7.2 Hz, J_{PH} = 63.1 Hz, 4H, *o*-Ph). ¹³C{¹H} NMR (100.4 MHz, C₆D₆, δ , ppm): 33.14 (t, ²⁺⁴J_{PC} = 5.8 Hz, NMe), 50.84 (t, ²⁺⁴J_{PC} = 3.31 Hz, J_{PtC} = 15.76 Hz, NCH₂), 123.29 (s, J_{PtC} = 5.7, *p*-Ph), 127.35 (t, ³J_{PC} = 4.9 Hz, J_{PtC} = 68.9 Hz, *o*-Ph), 136.98 (t, ⁴J_{PC} = 3.3 Hz, J_{PtC} = 36.6 Hz, *m*-Ph), 156.48 (dd, ¹J_{PC} = 169.2, ³J_{PC} = 16.6 Hz, J_{PtC} = 864.2 Hz, *ipso*-Ph). ³¹P{¹H} NMR (161.9 MHz, C₆D₆, δ , ppm): 145.65 (s, J_{PtP} = 2419 Hz). Elemental Analysis. Calcd. For C₂₀H₃₀Cl₂N₄P₂Pt: C, 36.71; H, 4.62; N, 8.56; Found: C, 36.93; H, 4.82; N, 8.19%.

Synthesis of *cis*-[Pt(*p*-tol)₂{P(Cl)(NMeCH₂)₂]₂] (3d). A mixture of 1a (546.1 mg, 3.579 mmol) and Pt(*p*-tol)₂(cod) (667.9 mg, 1.377 mmol) in benzene (5 mL) was stirred for 15 min at room

temperature. Volatile materials were removed under reduced pressure, and the resulting residue was washed with hexane (2 mL × 3), collected by filtration, and dried in *vacuo* to give a gray solid of **3d** (677.5 mg, 0.993 mmol, yield 87%). ¹H NMR (400 MHz, C₆D₆, δ , ppm): 2.13 (s, 6H, Me in *p*-tol), 2.42 -2.51 (m, 4H, NCH₂), 2.57 (d, ³*J*_{PH} = 15.6 Hz, 16H, 12H of NMe and 4H of NCH₂), 6.94 (d, ³*J*_{HH} = 6.0 Hz, 4H, *m*-Ph), 7.39 (t, ³*J*_{PH} = 8.0 Hz, *J*_{PtH} = 170.6 Hz, 4H, *o*-*Ph*). ¹³C{¹H} NMR (100 MHz, C₆D₆, δ , ppm): 21.58 (s, Me in *p*-tol), 33.60 (m, NMe), 51.22 (t, ²⁺⁴*J*_{PC} = 3.32 Hz, NCH₂), 129.07 (s, *p*-Ph), 131.46 (s, *J*_{PtC} = 12.44 Hz, *m*-Ph), 136.70 (s, *J*_{PtC} = 38.98 Hz, *o*-Ph), 153.83 (dd, ¹*J*_{PC} = 153.4, ³*J*_{PC} = 17.4 Hz, *J*_{PtC} = 870.8 Hz, *ipso*-Ph). ³¹P{¹H} NMR(162 MHz, C₆D₆, δ , ppm): 146.32 (s, *J*_{PtP} = 2395 Hz). Elemental Analysis. Calcd. for C₂₂H₃₄Cl₂N₄P₂Pt: C, 38.72; H, 5.02; N, 8.21; Found: C, 37.33; H, 5.37; N, 7.99%.

Synthesis of *cis*-[**Pt**(*p*-**CF**₃**Ph**)₂{**P**(**Cl**)(**NMeCH**₂)₂}₂] (**3e**). A mixture of **1a** (311.5 mg, 2.042 mmol) and Pt(*p*-CF₃Ph)₂(cod) (511.2 mg, 0.861 mmol) in benzene (4 mL) was stirred for 20 min at room temperature. Volatile materials were removed under reduced pressure, and the resulting residue was washed with hexane (2 mL × 3), collected by filtration, and dried in *vacuo* to give a yellow solid of **3e** (642.2 mg, 0.812 mmol, 94%). ¹H NMR (400 MHz, C₆D₆, δ , ppm): 2.23-2.32 (m, 4H, NCH₂), 2.37 (d, ³*J*_{PH} = 15.1 Hz, 12H, NMe), 2.46 (m, 4H, NCH₂), 7.29 (d, ³*J*_{HH} = 7.3 Hz, 4H, *m*-Ph), 7.34 (m, *J*_{PtH} = 61.5 Hz, 4H, *o*-Ph). ¹³C {¹H} NMR (100.4 MHz, C₆D₆, δ , ppm): 31.80 (t, ²*J*_{PC} = 10.8 Hz, NMe), 50.73 (s, NCH₂), 123.41 (s, *J*_{PtC} = 63.11 Hz, *o*-Ph), 125.28 (q, ²*J*_{FC} = 30.7 Hz, *p*-Ph), 125.89 (q, ¹*J*_{FC} = 271.5 Hz, CF₃), 136.73 (s, *J*_{PtC} = 38.2 Hz, *m*-Ph), 162.49 (dd, ¹*J*_{PC} = 167.7, ³*J*_{PC} = 17.4 Hz, *J*_{PtC} = 862.0 Hz, *ipso*-Ph). ³¹P {¹H} NMR (161.7 MHz, C₆D₆, δ , ppm): 141.52 (s, *J*_{PtP} = 2533 Hz). ¹⁹F {¹H} NMR (376 MHz, C₆D₆, δ , ppm): 141.52 (s, *J*_{PtP} = 2533 Hz). ¹⁹F {¹H} NMR (376 MHz, C₆D₆, δ , ppm): 7.315; H, 3.52; N, 7.10%.

Synthesis of *cis*-[Pt(Me)₂{P(Br)(NMeCH₂)₂}₂] (3f). A hexane solution (9 mL) of Pt(Me)₂(cod) (355.7 mg, 1.07 mmol) was added to 1b (420.7 mg, 2.14 mmol) at room temperature. The mixture was stirred for 5 min at room temperature. The solvent was removed by filtration, and the resulting residue was washed with hexane (2 mL × 3), collected by filtration, and dried in *vacuo* to give a yellow solid of 3f (568.1 mg, 0.918 mmol, 86%). ¹H NMR (400 MHz, C₆D₆, δ , ppm): 1.63 (apparent t, ³J_{PH} = 10.8 Hz, J_{PtH} = 73.1 Hz, 6H, PtMe), 2.35 (d, ³J_{PH} = 16.8 Hz, 12H, NMe), 2.53-2.54 (m, 2H, NCH₂), 2.58 (m, 2H, NCH₂), 2.62 (m, 4H, NCH₂). ³¹P{¹H} NMR (161.7 MHz, C₆D₆, δ , ppm): 166.77 (s, J_{PtP} = 2179 Hz). Elemental Analysis was not achieved due to instability.

Synthesis of *cis*-[Pt(I)₂{P(CI)(NMeCH₂)₂}₂] (3g). A CH₂Cl₂ solution (4 mL) of Pt(I)₂(cod) (314.3 mg, 0.565 mmol) was added to 1a (172.4 mg, 1.130 mmol) at room temperature. The mixture was stirred for 3 days at room temperature. The solvent was removed by filtration and the residue was dried in *vacuo* to give dark red crystals of 3g (266.0 mg, 0.353 mmol, 62%). ¹H NMR (400.0 MHz, CDCl₃, δ , ppm, r.t.); 2.86 (d, ³*J*_{PH} = 15.6 Hz, 12H, NMe), 3.32-3.37 (m, 8H, CH₂). ¹³C{¹H} NMR (100.4 MHz, CDCl₃, δ , ppm): 33.66 (t, ²*J*_{PC} = 5.0 Hz, NMe), 50.73 (t, ²*J*_{PC} = 13.5 Hz, NCH₂). ³¹P{¹H} NMR (161.7 MHz, CDCl₃, δ , ppm, r.t.); 85.83 (s, *J*_{PtP} = 5254 Hz). Elemental Analysis. Calcd. for C₈H₂₀Cl₂I₂N₄P₂Pt: C, 12.74; H, 2.67; N, 7.43%; Found: C, 12.83; H, 2.61; N, 7.25%.

Synthesis of *cis*-[Pt(Me)₂{P(Cl)(NMe₂)₂}₂] (3h). A hexane solution (7 mL) of Pt(Me)₂(cod) (319.0 mg, 0.927 mmol) was added to 1a (286.6 mg, 0.927 mmol) at room temperature. The mixture was stirred for 15 min at room temperature. Volatile materials were removed under reduced pressure until the residual solution became ca. 2 mL, and the solvent was removed by filtration at -78 °C. The resulting residue was washed with cold hexane (1 mL × 3), collected by filtration at -78 °C, and dried in *vacuo* to give a gray solid of 3h (350.6 mg, 0.656 mmol, 71%). ¹H NMR (400 MHz, C₆D₆, δ , ppm): 1.26 (apparent t, ³*J*_{PH} = 8.3 Hz, *J*_{PtH} = 71.6 Hz, 6H, PtMe), 2.58 (d, ³*J*_{PH} = 11.2 Hz, 24H, NMe). ³¹P{¹H} NMR (161.7 MHz, C₆D₆, δ , ppm): 156.04 ppm (s, *J*_{PtP} = 2665 Hz). Sufficient data of the elemental analysis were not obtained due to its instability.

Synthesis of *cis*-[Pt(Cl)₂{P(Me)(NMeCH₂)₂}₂] (4a). An acetonitrile solution (10 mL) of *cis*-[Pt(Me)₂{P(Cl)(NMeCH₂)₂}₂] (3a) (393.0 mg, 0.741 mmol) was stirred for 3 h at room temperature. Volatile materials were removed under reduced pressure, and the resulting residue was washed with hexane (2 mL × 3), collected by filtration, and dried in *vacuo* to give a white solid of 4a (390.4 mg, 0.736 mmol, 99%). Single-crystals of 4a were obtained by solvent diffusion over a few days from a CH₂Cl₂ layer containing 4a and an overlayer of hexane. ¹H NMR (400 MHz, CDCl₃, δ , ppm): 1.78 (d, ²*J*_{PH} = 10.0 Hz, 6H, PMe), 2.69 (d, ³*J*_{PH} = 12.39 Hz, 12H, NMe), 3.09-3.18 (m, 8H, NCH₂). ¹³C{¹H} NMR (100.4 MHz, CDCl₃, δ , ppm): 18.66 (dd, ¹*J*_{PC} = 43.2, ³*J*_{PC} = 2.5 Hz, *J*_{PtC} = 153.5 Hz, PMe), 33.88 (apparent t, ²⁺⁴*J*_{PC} = 5.0 Hz, NMe), 51.15 (s, NCH₂). ³¹P{¹H} NMR (161.7 MHz, CDCl₃, δ , ppm): 76.62 (s, *J*_{PtP} = 4406 Hz). Elemental Analysis. Calcd. for C₁₀H₂₆Cl₂N₄P₂Pt: C, 22.65; H, 4.94; N, 10.57; Found: C, 22,41; H, 4.95; N, 10.23%.

Synthesis of cis-[Pt(Cl)₂{P(Et)(NMeCH₂)₂}] (4b). An acetonitrile solution (15 mL) of cis-

[Pt(Et)₂{P(Cl)(NMeCH₂)₂}₂] (**3b**) (138.1 mg, 0.247 mmol) was stirred for 40 min at room temperature. Volatile materials were removed under reduced pressure, and the resulting residue was washed with hexane (2 mL × 3), collected by filtration, and dried in *vacuo* to give a white solid of **4b** (135.9 mg, 0.243 mmol, 99%). ¹H NMR (400 MHz, CDCl₃, δ , ppm): 0.94 (dt, ³*J*_{PH} = 18.4 Hz, ³*J*_{HH} = 7.6 Hz, 6H, PCH₂CH₃), 2.44 (m, 4H, PCH₂CH₃), 2.73 (d, ³*J*_{PH} = 11.2 Hz, 12H, NMe), 3.16-3.26 (m, 8H, NCH₂). ¹³C{¹H} NMR (100.4 MHz, CDCl₃, δ , ppm): 8.36 (apparent t, ²⁺⁴*J*_{PC} = 3.3 Hz, PCH₂CH₃), 28.69 (dd, ¹*J*_{PC} = 43.1, ³*J*_{PC} = 1.4 Hz, *J*_{PtC} = 157.6 Hz, PCH₂CH₃), 33.80 (apparent t, ²⁺⁴*J*_{PC} = 4.1 Hz, NMe), 51.57 (s, NCH₂). ³¹P{¹H} NMR (161.7 MHz, CDCl₃, δ , ppm): 82.61 (s, *J*_{PtP} = 4380 Hz). Elemental Analysis. Calcd. For C₁₂H₃₀Cl₂N₄P₂Pt: C, 25.81; H, 5.42; N, 10.03; Found: C, 25.84; H, 5.46; N, 9.86%.

Synthesis of *cis*-[Pt(Cl)₂{P(Ph)(NMeCH₂)₂}₂] (4c). An acetonitrile solution (7 mL) of *cis*-[Pt(Ph)₂{P(Cl)(NMeCH₂)₂}₂] (3c) (284.5 mg, 0.435 mmol) was stirred for 30 min at room temperature. Volatile materials were removed under reduced pressure, and the resulting residue was washed with hexane (2 mL × 3), collected by filtration, and dried in *vacuo* to give a white solid of 4c (275.9 mg, 0.422 mmol, 97%). ¹H NMR (400 MHz, CDCl₃, δ , ppm): 2.59 (d, ³*J*_{PH} = 11.6 Hz, 12H, NMe), 2.94-3.03 (m, 8H, NCH₂), 7.15 (s, 2H, *p*-Ph), 7.29 (t, ³*J*_{HH} = 7.20 Hz, 4H, *m*-Ph), 7.30-7.53 (m, 4H, *o*-Ph). ³¹P{¹H} NMR (161.7 MHz, CDCl₃, δ , ppm): 75.78 (s, *J*_{PtP} = 4409 Hz). Elemental Analysis. Calcd. For C₂₀H₃₀Cl₂N₄P₂Pt: C, 36.71; H, 4.62; N, 8.56; Found: C, 36.71; H, 4.62; N, 8.56%.

Synthesis of cis-[Pt(Cl)₂{P(*p***-tol)(NMeCH₂)₂}₂] (4d). In a procedure analogous to that outlined in the case of complex 4c, Pt(***p***-tol)₂{P(Cl)(NMeCH₂)₂}₂ (3d) (314.4 mg, 0.460 mmol) in acetonitrile (20 mL) gave a white powder of 4d (307.9 mg, 0.451 mmol, 98%). Single-crystals of 4d were obtained by solvent diffusion over a few days from a CH₂Cl₂ layer containing 4d and an overlayer of hexane. ¹H NMR (400 MHz, CDCl₃, \delta, ppm): 2.36 (s, 6H, Me in** *p***-tol), 2.67 (d, ³***J***_{PH} = 11.2 Hz, 12H, NMe), 3.02-3.13 (m, 8H, NCH₂), 7.19 (d, ³***J***_{HH} = 6.4 Hz, 4H,** *m***-Ph), 7.50 (dd, ³***J***_{PH} = 11.2 Hz, ³***J***_{HH} = 8.0 Hz, 4H,** *o***-Ph). ¹³C{¹H} NMR (100.4 MHz, CDCl₃, \delta, ppm): 21.57(s, Me in** *p***-tol), 35.28 (apparent t, ²⁺⁴***J***_{PC} = 4.2 Hz, NMe), 51.25 (s, NCH₂), 128.34 (d,** *J***_{PC} = 12.4 Hz,** *J***_{PtC} = 10.7, Ph), 130.20 (d,** *J***_{PC} = 12.4 Hz,** *J***_{PtC} = 10.7, Ph), 133.70 (d, ¹***J***_{PC} = 71.3 Hz,** *J***_{PtC} = 144.3 Hz,** *ipso***-Ph), 140.68 (s,** *C***Me). ³¹P{¹H} NMR (161.7 MHz, CDCl₃, \delta, ppm): 75.64 (s,** *J***_{PtP} = 4417 Hz). Elemental Analysis. Calcd. for C₂₂H₃₄Cl₂N₄P₂Pt: C, 38.72; H, 5.02; N, 8.21; Found: C, 38.10; H, 4.97; N, 7.95%.** Synthesis of *cis*-[Pt(Cl)₂{P(*p*-CF₃Ph)(NMeCH₂)₂}] (4e). An acetonitrile solution (15 mL) of *cis*-[Pt(*p*-CF₃Ph)₂{P(Cl)(NMeCH₂)₂}] (3e) (1.280 g, 1.62 mmol) was stirred for 4 h at 55 °C. Volatile materials were removed under reduced pressure, and the resulting residue was washed with hexane (2 mL × 3), collected by filtration, and dried in *vacuo* to give a white solid of 4e (*cis* and *trans* isomers in the 7 : 1 ratio determined by ³¹P NMR) (1.175 g, 1.49 mmol, 92%). ³¹P{¹H} NMR (161.7 MHz, C₆D₆, δ , ppm): 72.17 (s, *J*_{PtP} = 4450 Hz for *cis* isomer), 98.03 (s, *J*_{PtP} = 3495 Hz for *trans* isomer). Signals in ¹H and ¹³C{¹H} NMR spectra could not unambiguously be assigned due to severe overlapping of resonances.

Synthesis of *cis*-[Pt(Br)₂{P(Me)(NMeCH₂)₂] (4f). An acetonitrile solution (7 mL) of *cis*-[Pt(Me)₂{P(Br)(NMeCH₂)₂] (3f) (533.9 mg, 0.862 mmol) was stirred for 1 h at room temperature. Volatile materials were removed under reduced pressure, and the resulting residue was washed with hexane (2 mL × 3), collected by filtration, and dried in *vacuo* to give a yellow solid of 4f (513.0 mg, 0.829 mmol, 96%). Single-crystals of 4f were obtained by solvent diffusion over a few days from a CH₂Cl₂ layer containing 4f and an overlayer of hexane. ¹H NMR (400 MHz, CDCl₃, δ , ppm): 1.93 (d, ²*J*_{PH} = 8.3 Hz, *J*_{PtH} = 26.4 Hz, 6H, PMe), 2.71 (d, ³*J*_{PH} = 12.2 Hz, *J*_{PtH} = 26.4 Hz, 12H, NMe), 3.10-3.20 (m, 8H, NCH₂). ¹³C{¹H} NMR (100.7 MHz, CDCl₃, δ , ppm): 21.15 (d, ¹*J*_{PC} = 39.9 Hz, *J*_{PtC} = 163.6 Hz, PMe), 33.84 (d, ²*J*_{PC} = 9.1 Hz, NMe), 50.93 (s, *J*_{PtC} = 29.1 Hz, NCH₂). ³¹P{¹H} NMR (161.7 MHz, CDCl₃, δ , ppm): 76.23 (s, *J*_{PtP} = 4361 Hz). Elemental Analysis. Calcd. for C₁₀H₂₆Br₂N₄P₂Pt : C, 19.40; H, 4.23; N, 9.05; Found: C, 19.50; H, 4.23; N, 8.81%.

Synthesis of *cis*-[Pt(Cl)₂{P(Me)(NMe₂)₂}₂] (4h). An acetonitrile solution (2 mL) of *cis*-[Pt(Me)₂{P(Cl)(NMe₂)₂}₂] (3h) (81.1 mg, 0.152 mmol) was stirred for 10 min at room temperature. Volatile materials were removed under reduced pressure, and the resulting residue was washed with hexane (2 mL × 3), collected by filtration, and dried in *vacuo* to give a yellow solid of 4h (78.7 mg, 0.147 mmol, 97%). ¹H NMR (400 MHz, C₆D₆, δ , ppm): 1.76 ppm (d, ²*J*_{PH} = 8.4 Hz, *J*_{PtH} = 24.4 Hz, 6H, PMe), 2.76 ppm (d, ³*J*_{PH} = 9.6 Hz, 24H, NMe). ¹³C{¹H} NMR (100.4 MHz, CDCl₃, δ , ppm): 16.93 (dd, ¹⁺³*J*_{PC} = 68.8, 2.4 Hz, PMe), 39.09 (t, ²⁺⁴*J*_{PC} = 2.5 Hz, NMe). ³¹P{¹H} NMR (161.7 MHz, C₆D₆, δ , ppm): 66.07 ppm (s, *J*_{PtP} = 4314 Hz). Elemental Analysis. Calcd. for C₁₀H₃₀Cl₂N₄P₂Pt: C, 22.48; H, 5.66; N, 10.49; Found: C,22.40; H, 5.84; N, 9.15%.

X-ray crystallography measurements

Crystals (2, 3a, 3g, 4a, 4d and 4f) suitable for X-ray diffraction studies were separately mounted in a glass capillary. All of data were collected at 200 K on Rigaku AFC-7/Mercury CCD areadetector diffractometer equipped with monochromated MoK*α* radiation. All of calculations were performed with the CrystalClear software package of Molecular Structure Corporation. A full-matrix least-squares refinement was used for the non-hydrogen atoms with anisotropic thermal parameters. Hydrogen atoms were located by assuming the ideal geometry and were included in the structure calculation without further refinement of the parameters. Those crystal data are listed in Tables S1 and S2. Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 1040103 for 2, 1041011 for 3a, 1041007 for 3g, 1041008 for 4a, 1041009 for 4d, and 1041010 for 4f. Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

	2	3a	4a
empirical formula	$C_{10}H_{26}Cl_2N_4P_2Pd$	$C_{10}H_{26}Cl_2N_4P_2Pt$	$C_{10}H_{26}Cl_2N_4P_2Pt$
formula weight	441.59	530.28	530.28
<i>T</i> (K)	200(2)	200(2)	200(2)
crystal system	Orthorhombic	Monoclinic	Orthorhombic
space group	$Pna2_1$	C2/c	$Pna2_1$
a (Å)	11.9253(19)	11.246(3)	12.007(2)
<i>b</i> (Å)	16.170(3)	9.1156(19)	16.096(3)
<i>c</i> (Å)	9.0441(12)	17.511(4)	9.0774(16)
$\beta(^{\circ})$		96.035(5)	
volume (Å ³)	1744.0(5)	1785.2(7)	1754.2(5)
Z	4	4	4
$ ho_{ m calcd} (m mg m^{-3})$	1.682	1.973	2.008
μ (mm ⁻¹)	1.547	8.332	8.479
<i>F</i> (000)	896	1024	1024
crystal size (mm ³)	$0.24 \times 0.20 \times 0.05$	$0.25 \times 0.10 \times 0.05$	$0.30 \times 0.20 \times 0.12$
reflections collected	16484	8531	16812
independent reflections	2727 (0.0205)	2044 (0.0270)	2808 (0.041()
(R(int))	3737 (0.0395)	2044 (0.0379)	3898 (0.0416)
$R1 \ (I > 2\sigma(I))$	0.0349	0.0283	0.0336
wR2	0.0675	0.0586	0.0555
Goodness of fit	1.138	1.169	1.187

Table S1. Crystallographic data and details of structure refinement of complexes 2, 3a and 4a.

	4 d	4f	3g
empirical formula	$C_{22}H_{34}Cl_2N_4P_2Pt$	$C_{10}H_{26}Br_2N_4P_2Pt$	$C_8H_{20}Cl_2I_2N_4P_2Pt\\$
formula weight	682.46	619.20	754.01
<i>T</i> (K)	200(2)	200(2)	200(2)
crystal system	Monoclinic	Tetragonal	Orthorhombic
space group	$P2_{1}/c$	$P-42_1c$	$Pna2_1$
<i>a</i> (Å)	10.0497(4)	19.7900(17)	16.534(2)
<i>b</i> (Å)	32.6793(15)	19.7900(17)	12.1735(15)
<i>c</i> (Å)	16.1968(7)	9.3200(9)	9.4837(12)
$\beta(^{\circ})$	91.935(2)		
volume (Å ³)	5316.3(4)	3650.1(6)	1908.8(4)
Z	8	8	4
$ ho_{ m calcd}~(m mg~m^{-3})$	1.705	2.254	2.624
μ (mm ⁻¹)	5.617	12.236	11.026
<i>F</i> (000)	2688	2336	1376
crystal size (mm ³)	$0.38 \times 0.07 \times 0.06$	$0.10\times 0.08\times 0.02$	$0.12\times0.08\times0.07$
reflections collected	40696	27014	18154
independent reflections	11745 (0.0440)	4140 (0.0645)	4022 (0.0422)
(R(int))	11745 (0.0440)	4149 (0.0043)	4033 (0.0423)
$R1 \ (I > 2\sigma(I))$	0.0484	0.0473	0.0320
wR2	0.0701	0.0737	0.0655
Goodness of fit	1.191	1.251	1.114

Table S2. Crystallographic data and details of structure refinement of complexes 4d, 4f and 3g.

Calculation Section

path A: via metallaphosphorane

For metallasphophorane complexes **6a** and **7a**, geometry searches for local minima (LM) and transition states (TS) were performed using B3PW91/BS2. The results are shown in Figs. S1–S2. The energy minimum search for **6a** lead to a structure similar to the reactant complex **3a** (see Figure S1(c)), and TS search lead to a structure similar to TS (**10a** \rightarrow **11a**) of path C (see Fig. S1(d)). For **7a**, the minimum and TS searches lead to a three-coordinated complex in which a Cl⁻ ion was situated far from the Pt (Fig. S2). The LM and TS structures of metallaphosphorane type were not found for both complexes. Therefore, the path A is unfavorable reaction pathway.

Fig. S1. (a) Chemical formula of **6a**, (b) an initial structure of **6a**, (c) the optimized structure (local minimum), and (d) the obtained TS structure.

Fig. S2. (a) Chemical formula of **7a**, (b) an initial structure of **7a**, (c) the optimized structure (local minimum), and (d) the obtained TS structure.

path B: via oxidative addition

Path B is the reaction sequences involving oxidative addition of the P–Cl bond of **3a** (**5a**) to give a phosphide complex $Pt(Cl)(Me)_2(PR_2)(PClR_2)$ (8a) $(Pt(Cl)_2(Me)(PR_2)(PR_2Me)$ (9a)) followed by reductive elimination of the Me and PR_2 groups to give $Pt(Cl)(Me)(PR_2Cl)(PR_2Me)$ (5a) $((Pt(Cl)_2(PMeR_2)_2 (4a)))$. As $Pt(Cl)(Me)_2(PR_2)(PClR_2) (8a)$ is supposed to be formed by the oxidative addition of one of P–Cl bonds in 3a, it might be reasonable that the PR₂ and Cl ligands are situated *cis* to each other right after the oxidative addition. The same situation is postulated for 9a. Thus, five five-coordinated isomers are conceivable for 8a and 9a as well. The five initial structures are named as Ainit, Binit, Cinit, Dinit, and Einit for 8a, and A'init, B'init, C'init, D'init, and E'init for 9a (see Figs. S3 and S4). Ainit, Binit, and Einit (A' init, B' init, and E' init) have the phosphide ligand in a basal position. Cinit and Dinit (C'init and D'init) have the phosphide ligand at the top of the pyramidal structure. Next, geometries of these ten complexes (Ainit-Einit and A'init-E'init) were optimized at the B3PW91/BS2 level. The results are shown on the right-hand side of Figs. S3 and S4 for 8a and 9a, respectively. For 8a, A_{opt} and B_{opt} are quite similar four-coordinated complexes with a Cl atom far away from Pt. Therefore, A_{opt} and B_{opt} are not the products caused by oxidative addition. C_{opt} and D_{opt} have a phosphide ligand at the top of the pyramidal structure with two Me ligands at the *cis* and trans positions, respectively. As the phosphide phosphorus does not adopt a planar geometry, the phosphide serves as a 1e-donor ligand in both Copt and Dopt. Eopt has almost the same geometry as that of Copt. Thus, two types of optimized geometries Copt and Dopt were obtained for fivecoordinated complex 8a. Comparing the energy of Copt with that of Dopt, Copt is more stable. Dopt is less stable than the reactant 3a, by 10.23 kcal/mol. Copt is less stable but comparable in energy to 3a. The energy difference between them is only 2.14 kcal/mol. As for 9a, quite similar results were obtained (see Fig. S4). The only difference between the structures in 8a and 9a is that B'opt is quite similar to C'opt for 9a. These results suggest that the Me/Cl exchange may provide five-coordinated complexes such as Copt and C'opt. Then, scan calculations for the inverse reaction, i.e., the Cl transfer from Pt to phosphine $(8a \rightarrow 3a \text{ and } 9a \rightarrow 5a)$ were performed starting from the obtained stable fivecoordinated structures C_{opt} and C'_{opt}. The results are shown in Figs. S5 and S6. The potential energy rose with the transfer of Cl ion in both cases, and the saddle point P in Fig. S5 was found for 8a. For the saddle point of **8a** (point P: $r_{Pt-Cl} = 3.44$ Å, $r_{P-Cl} = 3.30$ Å) and the local maximum of **9a** (point Q: $r_{Pt-Cl} = 3.73$ Å, $r_{P-Cl} = 2.91$ Å), TS search calculations were performed. However, the obtained structures were found to be not a TS but a stable five-coordinated complex (see Figs. S7 and S8). Another PES calculation was also calculated against Pt–Cl distance and the P(1)–Pt–P(2)–C(1) dihedral angle. In this PES calculation, because the corresponding phosphenium ligand had been

eliminated from Pt with the decreasing of dihedral angle, Pt–P(2) distance was fixed. The saddle point R was found as shown in Fig. S9. For the point R (r(Pt–Cl) = 2.9 Å, d(P–Pt–P–C) = 146°), TS search calculation was performed. The obtained TS structure with one negative force constant was not for the Cl transfer from P to Pt, but corresponded to the Cl transfer from the eliminated phosphine to Pt or the P–Pt cleavage by Cl. The product by IRC calculation from the TS was the four-coordinated complex, PtCl(Me)₂P(NMeCH)₂, and the free phosphenium (See Figure S10). Additionally, the energy difference between the complex **3a** and the TS was too large (221.24 kcal/mol). These results suggested that this route was energetically unfavorable although the addition of the free phosphenium to PtCl(Me)₂P(NMeCH)₂ might lead to the C_{opt}. Therefore, path B is not a plausible pathway.

Fig. S3. Five initial structures $(A_{init} - E_{init})$ of **8a** and the obtained optimized structures $(A_{opt} - E_{opt})$; (a) Cl is located at the top of the pyramidal structure (A_{init}) , (b) Me is at the pyramidal summit (B_{init}) , (c) phosphide ligand is at the pyramidal summit and two Me ligands are in *cis*-position (C_{init}) , (d) phosphide ligand is at the pyramidal summit and two Me ligands are in *trans*-position (D_{init}) , and (e) phosphine ligand is at the pyramidal summit (E_{init}) .

Fig. S4. Five initial structures $(A'_{init} - E'_{init})$ of **9a** and the obtained optimized structures $(A'_{opt} - E'_{opt})$; (a) complex A', (b) complex B', (c) complex C', (d) complex D', and (e) complex E'. See the figure caption in Fig. S3 in more details.

Fig. S5. Potential energy surface (PES) for the Pt–Cl and P–Cl distances of **8a**. Point P is a saddle point with the Pt–Cl bond length of 3.44 Å and the P–Cl bond length of 3.30Å.

Fig. S6. Potential energy surface (PES) for the Pt–Cl and P–Cl distances of **9a**. Point Q is a local maximum with the P–Cl bond length of 3.73 Å and the P–Cl bond length of 2.91 Å.

Fig. S7. Initial structure (P_{init}) from the saddle point on the PES shown in Figure S5 and the obtained structure (P(TS search)) by the TS search for Cl transfer in the first half of the reaction.

Fig. S8. Initial structure (Q_{init}) from the energy-maximum structure on the PES shown in Figure S6 and the obtained structure (Q(TS search)) by the TS search for Cl transfer in the second half of the reaction.

Fig. S9. Potential energy surface (PES) for the P(1)-Pt-P(2)-C(1) dihedral angle and Pt-Cl distances of **3a** and the structures denoted by blue circles. Point R is a saddle point with the P(1)-Pt-P(2)-C(1) dihedral angle of 176° and the Pt-Cl bond length of 2.9 Å.

Product

Fig. S10. TS structure from the point R and the product structure by IRC calculation from the TS.

path C: via phosphenium

Cl- elimination from Pt complex

Fig. S11. Potential energy curve by scan calculations at the B3PW91/BS2 level for the P–Cl cleavage in the first half of path C. Hydrogen atoms are omitted for clarity.

Fig. S12. Potential energy curve by scan calculations at the B3PW91/BS2 level for the P–Cl cleavage in the second half of path C. Hydrogen atoms are omitted for clarity.

Fig. S13. Potential energy curve by scan calculations at the B3PW91-D3/BS2 level for the P–Cl cleavage in the first half of path C. Hydrogen atoms are omitted for clarity.

Fig. S14. Potential energy curve by scan calculations at the B3PW91-D3/BS2 level for the P–Cl cleavage in the second half of path C. Hydrogen atoms are omitted for clarity.

Table S3. The bond dissociation energy for radical splitting and ionic bond cleavage atB3PW91/BS2 with or without PCM (solvent: acetonitrile)

Molecular orbital change during the Me migration

Fig. S15. Change of the molecular orbitals during the Me transfer reaction in the first half of path C.

Fig. S16. Change of the frontier molecular orbitals with orbital energies related to the Me transfer reaction and Gibbs free energies. Me migration of the first half (upper) and the second half (lower).

Another possibility for path C

As another possibility for path C, the route via the complex 11a' was investigated. Complex 11a' is an isomer of the phosphenium complex 11a in which the PR₂Me moves to the trans position of PR₂Cl. The calculation results are shown in Figs. S17 and S18. The route consists of 7 steps, and the route from **3a** to **11**a is the same as the Path C. Isomerization reaction in the third step (**11a** \rightarrow **11a'**) is accompanied by the transfer of PR₂Me. Complex **11a'** is more stable than **11a** by 11.40 kcal/mol, and the activation energy (TS(**11a-11a'**) is low (10.05 kcal/mol). Therefore, **11a/11a'** isomerization is conceivable. The fourth step (**11a'** \rightarrow **5a'**) is Cl⁻ coordination process to Pt. Complex **5a'** is more stable than **11a**'. The fifth step (**5a'** \rightarrow **12a'**) is Cl⁻ elimination from the phosphine ligand, and the generated phosphenium complex (**12a'**) is less stable than complex **5a'** by 9.51 kcal/mol. This energy difference is large compared to the corresponding one (step **5a** \rightarrow **12a**: 4.08 kcal/mol) of the original path C. The sixth step (**12a'** \rightarrow **13a'**) is the generation of three-coordinated complex accompanied with the Me transfer from Pt to P. The activation energy, 15.79 kcal/mol, is also larger than the corresponding one (step **12a** \rightarrow **13a'**: 2.92 kcal/mol) for the original path C. These results indicate that the route via **11a'** is possible but unfavorable compared with the original path C.

Fig. S17. Gibbs free energy profile for another path of path C based on the B3PW91/BS2 calculations.

Fig. S18. Optimized strictures of LM and TS for energy profile of Fig. 17.

Coordinates of the optimized geometries at B3PW91/BS2 for route C in Å.

				7	2.272711	1.220227	-1.043699
Com	olex 3a			7	1.468099	1.638527	1.197497
-				6	2.697195	2.565812	-0.642569
78	0.000000	1.189017	0.000000	1	2.089460	3.301609	-1.179896
6	1.346807	2.784233	-0.231842	1	3.746577	2.732200	-0.901833
1	1.175850	3.212970	-1.225183	6	2.484646	2.648831	0.871577
1	2.402502	2.514382	-0.167141	1	3.416063	2.437744	1.413543
1	1.134303	3.557531	0.511381	1	2.126880	3.633329	1.179026
15	1.738291	-0.322901	-0.123130	6	2.610484	0.729845	-2.364419
7	2.699483	-0.517996	1.202521	1	2.290952	1.454732	-3.118078
6	3.270111	-1.857460	1.345636	1	2.090890	-0.209802	-2.556533
1	2.865567	-2.317953	2.254530	1	3.688433	0.565959	-2.468245
1	4.358646	-1.808962	1.443658	6	1.164121	1.462875	2,609470
6	2.860651	-2.627774	0.088671	1	2 053794	1 190138	3 190712
1	3.655083	-2.594321	-0.669510	1	0 411585	0.682451	2 734576
1	2.641622	-3.675328	0.306822	1	0 757858	2 396038	3 004589
7	1.651436	-1.969247	-0.418149	15	-1 771789	0.368106	-0.017523
6	3.012559	0.491853	2.191451	7	-3 034849	0.422084	1 003547
1	2.828099	0.094919	3.194728	7	-2 309729	1 539190	-1 008479
1	2.373138	1.362892	2.046871	6	-4 116278	1 322350	0 572376
1	4.060373	0.803701	2.125565	1	-4 463375	1.908016	1 424479
6	1.129520	-2.479393	-1.673661	1	-4.947715	0.714857	0 203268
1	1 871390	-2 418407	-2 480345	6	-3 52/535	2 216083	-0 524903
1	0 242474	-1 917152	-1 966214	1	-3.324333	2.210905	-0.324903
1	0.839124	-3 523705	-1 540468	1	-4.219004	2.348110	-0.1/3018
17	3 154503	0 277841	-1 770853	6	-3.245591	-0.456008	-0.143918
6	-1 346809	2 784231	0 231846	1	-3 385245	0.13880/	3 047312
1	-1 175852	3 212967	1 225188	1	-2 367963	-1 007287	2 277734
1	-2 402504	2 514379	0 167145	1	-2.307903	-1.097287	1 078138
1	-1 134306	3 557531	-0.511376	6	-1 613860	2 063297	-2 173077
15	-1 738291	-0 322903	0 123130	1	-1.013809	2.003297	-2.175077
7	-2.699491	-0 517986	-1 202516	1	-2.277077	2.029433	-3.039119
6	-3 270120	-1 857449	-1 345639	1	1 306050	2 006101	1 002508
1	-2 865583	-2 317936	-2 254540	1	-1.300030	2 750025	-1.993398
1	-4 358656	-1 808951	-1 443653	0	1.132470	-2.739923	-0.304930
6	-2.860652	-2.627773	-0.088683	1	0.616407	-3.003732	0.482444
1	-3 655079	-2 594327	0.669503	1	1.005850	-3.396070	-0.972794
1	-2.641625	-3 675326	-0 306844	1	2 287777	-2.481027	-1.113//8
7	-1 651433	-1 969251	0.418135	17	1 620000	-0.722830	0.617745
6	-3 012573	0 491870	-2 191437	0	-1.029090	-2.371414	-0.017743
1	-2 828120	0.094943	-3 194718	1	-2.004101	-2.241019	1 647096
1	-2 373148	1 362906	-2 046855	1	-1.490399	-2.908132	-1.04/980
1	-4 060386	0.803720	-2.125541	1	-1.403113	-5.410950	0.034024
6	-1 129510	-2 479407	1 673639	Comr	$\log TS(100)$	11a)	
1	-1 871374	-2 418423	2 480329	Com	15(10a)	11a)	
1	-0 242459	-1 917173	1 966188	6	-3 375192	1 552437	1 581108
1	-0.839120	-3 523720	1 540437	6	-2 923206	2 545575	0.513226
17	-3 154491	0 277826	1.770867	6	-3 264790	-0.937936	1 895404
17	5.154471	0.277020	1.770007	6	-1.052880	2 749920	-1 113374
Com	olex 10a			6	2 180087	-1 936954	0 034721
com				6	4 141755	1 468980	-0 445612
78	-0.135639	-1.131266	-0.200459	6	4 177297	1 082299	1 030735
15	1.660182	0.316227	0.189819	6	2,777115	0.808534	-2 456684
				0	<u> </u>	0.000000	2.120004

6	2.459182	0.446027	2.760967	1	-1.746299	1.927678	-2.921139
6	-1.001455	-2.715831	-0.307289	1	-0.499549	0.667279	-2.789423
7	-2.862916	0.244947	1.160618	1	-0.022819	2.369306	-2.882114
7	-1.678806	1.994507	-0.040778	15	1.876160	-0.406077	0.096558
7	3.049115	0.688202	-1.035306	7	2.815519	0.238327	-1.151749
7	2.789238	0.759108	1.380844	7	2.131708	0.929849	1.114294
17	-2.910336	-0.070985	-1.896124	6	2.855119	-1.825616	0.737964
15	-1.794691	0.331386	-0.084440	1	2.885573	-2.608049	-0.025495
15	1.961393	0.155827	0.084738	1	2.381979	-2.242587	1.631169
78	0.031556	-0.903122	-0.094335	1	3.878151	-1.522386	0.971745
1	-2.957729	1.798511	2.564023	6	3.330152	1.566662	-0.828797
1	-4 464707	1 526201	1 662513	1	2 686336	2 351334	-1 250739
1	-3 679876	2 653549	-0 275370	1	4 335713	1 690596	-1 242889
1	-2.723026	3 531780	0.935487	6	3 344573	1 634045	0 690932
1	-3 075896	-0 792714	2 963468	1	4 250554	1 155780	1 093969
1	-2 692422	-1 801780	1 562276	1	3 316326	2 664650	1.053558
1	-4 329319	-1 143578	1 749145	6	2 646709	-0 104632	-2 549003
1	-1 708865	2 848877	-1 986830	1	2.040709	0.623369	-3 084275
1	-0.126753	2.040077	-1 419433	1	2.024370	-1 088154	-2 646055
1	-0.806327	3 746520	-0.742630	1	3 622728	-0.147864	-3.041922
1	2 304754	-2 317230	-0.977603	1	1 9/673/	0 771//3	2 546805
1	1 657007	2.517230	-0.977003	1	2 770088	0.771445	2.540805
1	2 166108	-2.034798	0.072733	1	2.779988	0.239719	2 742642
1	3.100108	-1.621046	0.492132	1	1.020491	0.217419	2.742043
1	5.940807	2.339282	-0.373889	1	1.034170	2 510062	0.109629
1	3.083322	1.229238	-0.944645	0	-2.020310	-2.310902	0.198028
1	4.82/939	0.214/58	1.202/51	1	-2.752725	-2.1//00/	0.942469
1	4.529475	1.905154	1.655233	1	-2.540154	-2.645/18	-0./5/311
1	2.59/966	1.852611	-2.734696	17	-1.595993	-3.4/063/	0.522174
1	1.894091	0.223884	-2./18/58	17	-3.395610	0.292396	-0.828642
1	3.624634	0.428914	-3.032350	G	1 -		
l	2.997560	-0.439229	3.11/881	Com	plex 5a		
l	1.386557	0.266928	2.850428	15	1 620022	0 200271	0 158038
l	2.719126	1.296094	3.394812	13	2 110120	0.200371	1 112061
l	-2.024794	-2.654951	-0.679523	7	2.119129	1.149210	-1.116001
1	-0.409730	-3.301397	-1.020139		1.336323	1.43/0/2	1.21/320
1	-1.000140	-3.240948	0.654092	0	2.823220	2.329483	-0.00/322
				1	2.752933	3.13/814	-1.338294
Com	plex 11a			I	3.8856/5	2.100/56	-0.44/488
70	0.242257	1 222666	0.007746	0	2.131524	2.694391	0./09401
/8	-0.343257	-1.323666	-0.00//46	1	2.848/88	3.100979	1.428329
15	-1.399415	0.551314	-0.091/50	I	1.335890	3.430/33	0.554334
/	-1.532625	1.46402/	1.26464/	6	2.614487	0.557730	-2.348395
1	-0./84/94	1.//6808	-1.035413	1	2.555210	1.29/168	-3.150080
6	-1.22/416	2.8804/2	1.043417	1	1.990658	-0.295106	-2.622695
l	-0.262093	3.114906	1.503683	l	3.655185	0.221842	-2.2560/5
l	-1.996665	3.508411	1.499631	6	1.105211	1.372426	2.593579
6	-1.189344	3.0/2125	-0.4/1634	l	1.953637	1.432530	3.284697
1	-2.174603	3.364457	-0.858795	1	0.587429	0.426611	2.761211
1	-0.464352	3.833861	-0.764478	1	0.410904	2.186698	2.820439
6	-1.932523	1.004803	2.578947	15	-1.726307	0.543797	-0.398121
1	-1.224421	1.363133	3.330895	7	-2.751493	0.907858	0.918692
1	-1.937802	-0.085295	2.607873	7	-1.296743	2.187218	-0.637340
1	-2.932185	1.369237	2.835325	6	-2.867054	0.140957	-1.777520
6	-0.770320	1.679217	-2.486336	1	-3.388263	-0.789589	-1.552057

1	-1.746299	1.927678	-2.921139
1	-0.499549	0.667279	-2.789423
1	-0.022819	2.369306	-2.882114
15	1.876160	-0.406077	0.096558
7	2.815519	0.238327	-1.151749
7	2.131708	0.929849	1.114294
6	2.855119	-1.825616	0.737964
1	2.885573	-2.608049	-0.025495
1	2.381979	-2.242587	1.631169
1	3.878151	-1.522386	0.971745
6	3.330152	1.566662	-0.828797
1	2.686336	2.351334	-1.250739
1	4.335713	1.690596	-1.242889
6	3.344573	1.634045	0.690932
1	4.250554	1.155780	1.093969
1	3.316326	2.664650	1.053558
6	2.646709	-0.104632	-2.549003
1	2 024370	0.623369	-3 084275
1	2.183870	-1 088154	-2.646055
1	3 622728	-0 147864	-3 041922
6	1 946734	0 771443	2 546805
1	2 779988	0.239719	3 027641
1	1.026401	0.237719	2 742643
1	1.020491	1 755440	2.742043
6	2.026516	2 510062	0.108628
1	-2.020310	-2.310902	0.198028
1	-2.732723	-2.1//00/	0.942409
1	-2.540154	-2.045/18	-0./5/311
1	-1.595993	-3.4/063/	0.522174
1/	-3.395610	0.292396	-0.828642
Com	plex 5a		
1.5	1 (20022	0.000271	0.150020
15	1.620922	0.2003/1	0.158938
/	2.119129	1.149218	-1.118061
1	1.538523	1.45/0/2	1.21/526
6	2.823226	2.329483	-0.60/322
1	2.752933	3.137814	-1.338294
1	3.885675	2.100756	-0.447488
6	2.131524	2.694391	0.709401
1	2.848788	3.100979	1.428329
1	1.335890	3.430733	0.554334
6	2.614487	0.557730	-2.348395
1	2.555210	1.297168	-3.150080
1	1.990658	-0.295106	-2.622695
1	3.655185	0.221842	-2.256075
6	1.105211	1.372426	2.593579
1	1.953637	1.432530	3.284697
1	0.587429	0.426611	2.761211
1	0.410904	2.186698	2.820439
15	-1.726307	0.543797	-0.398121
7	-2.751493	0.907858	0.918692
7	-1.296743	2.187218	-0.637340
	0.067054	0.140057	1 777530

1	-2.299249	-0.000912	-2.701075	e
1	-3.595076	0.943828	-1.913799	1
6	-2.749587	2.336845	1.227480	1
1	-2.037941	2.559674	2.036368	6
1	-3.744087	2.653797	1.558318	1
6	-2.337150	3.035732	-0.054503	1
1	-3.199390	3.147207	-0.731925	1
1	-1.933167	4.033575	0.138249	6
6	-2.886521	0.022589	2.061242	1
1	-2.077549	0.154815	2,793995	1
1	-2.896087	-1.018036	1.738371	1
1	-3.836420	0.228291	2.564158	17
6	-0.829564	2.613528	-1.946390	6
1	-1 635173	2 653211	-2 694623	1
1	-0.046825	1 943285	-2.301881	1
1	-0.396061	3 613808	-1 863253	1
6	1 146537	-2 858431	0 139495	
1	1.076224	-2.835725	-0.572152	Co
1	1.570224	-2.855225	1 1/10022	Cu
1	0.548806	2.091747	0.032501	78
17	3 501526	-3.733004	-0.032301	15
1/	0.082224	-0.760791	0.752750	10
/ 8	-0.065524	-1.1011/3	-0.081340	,
1 /	-1.91/089	-2.734095	-0.243893	, F
Com	alar 12a			1
Com	DIEX 128			1
78	0.064351	-1 062775	-0.073053	6
15	-1 686740	0 147127	-0 162878	1
7	-2.953440	0 224357	0.842160	1
, 7	-2.241109	1 201523	-1 257971	6
6	-4.064051	1.034895	0.313750	1
1	-4 457702	1.670208	1 107540	1
1	-4 855996	0.360135	-0.022994	1
6	-3 487953	1 867097	-0.841118	ĥ
1	-4 174162	1.007057	-1 687386	1
1	-3 250219	2 888633	-0 531951	1
6	-3.142573	-0 574499	2 0/378/	1
1	-3.347455	0.082656	2.045704	14
1	-2 239063	-1 1/18236	2.070070	1.
1	-2.239003	-1.262515	1 005028	7
6	-1 541224	1 650486	-2 451152	í F
1	2 185320	1.030480	2 221742	1
1	-2.185329	1.062027	-3.321743	1
1	-0.034209	2 705817	-2.387308	1
1	-1.2/0014	2.703817	-2.334442	4
13	1.046020	1 257069	0.313933	1
7	2.010380	1.237008	-0.724221	1
	0.993/01	2.143803	0.932073	1
0	2.803/94	0.100001	1.83138/	1
1	3.3949/1	-0./3//83	1.4/1984	1
1	2.244891	-0.22030/	2./12004	
l	3.408988	0.930633	2.095/39	(
6	2.381695	2.690339	-0.906950]
1	1.632489	2.868640	-1.691482	
1	3.311300	3.183644	-1.205720]

6	1.885358	3.197357	0.435920
1	2.725685	3.375018	1.123847
1	1.325906	4.130946	0.336375
6	2 916381	0 493185	-1 923522
1	2 108379	0 546660	-2 665983
1	3.085504	-0 554260	-1 672847
1	3 820124	0.883043	2 278062
1	0.459506	0.885345	-2.378902
1	0.436390	2.554024	2.209554
1	1.245550	2.455258	3.031304
1	-0.189436	1.522767	2.555110
1	-0.144194	3.265203	2.275225
17	1.818501	-2.681461	-0.019889
6	-1.183296	-2.695026	-0.642146
1	-0.719945	-3.108191	-1.540146
1	-1.113021	-3.413929	0.176690
1	-2.236362	-2.498539	-0.850342
Comr	blex TS(12a→	13 a)	
Joint	10(12 u	100)	
78	-0.038440	-0.906751	-0.036206
15	1.775066	0.170205	0.112044
7	2.888524	0.588570	-0.998243
7	2.485278	0.906590	1.373242
6	4.097553	1.168602	-0.392053
1	4.462779	1.982448	-1.019619
1	4.873135	0.398092	-0.330988
6	3.685484	1.669734	0.996718
1	4.474015	1.499065	1.731187
1	3,437588	2,735440	0.987949
6	2 937129	0.096816	-2 366731
1	3 160569	0 924522	-3 042020
1	1 971652	-0 328377	-2.641737
1	3 706544	-0.673304	-2 471584
6	1 910822	1 064096	2.471504
1	2 600465	0.602034	2.077710
1	2.009403	0.092934	2 760518
1	0.985048	0.493843	2.709318
1	1.695280	2.11/994	2.894138
15	-1.833658	0.484483	-0.422462
/	-2.805989	0.909508	0.8991/1
1	-1.438343	2.089274	-0.793145
6	-2.960577	-0.174876	-1.693305
1	-3.385479	-1.115526	-1.338628
1	-2.405112	-0.377738	-2.612079
1	-3.761438	0.540656	-1.889989
6	-2.687302	2.340028	1.192650
1	-1.879375	2.529110	1.914504
1	-3.624416	2.704852	1.621863
6	-2.381291	2.999438	-0.140385
1	-3.298292	3.133351	-0.733342
1	-1.912282	3.978190	-0.011150
6	-2.956782	0.030906	2.048131
1	-2.096983	0.084861	2.730098
1	-3.077550	-1.002755	1.723450
1	-3.855552	0.318795	2.599222

6	-0.978747	2.455608	-2.121489	1	1.630363	-3.353912	-0.231124
1	-1.792814	2.502326	-2.857664	1	2.881775	-2.785539	0.897456
1	-0.235183	1.737164	-2.472034				
1	-0.498848	3.436126	-2.076792	Com	plex 4a		
17	-1.439928	-2.854566	0.011905		1		
6	1.807972	-2.151964	0.383050	78	0.000000	-1.002577	-0.000001
1	1.451530	-2.619831	1.299957	15	1.669452	0.453160	0.488805
1	1.739256	-2.808256	-0.483772	7	2.898475	0.628594	-0.670132
1	2.862592	-1.900055	0.528938	7	1.390936	2.113761	0.610658
				6	2.492684	-0.030718	2.046248
Comr	olex 13a			1	2.950551	-1.012478	1.937707
- 1				1	1.758311	-0.077102	2.853870
78	-0.764099	-0.987894	-0.086124	1	3.256876	0.712934	2.284329
15	1.470294	-0.961393	0.170857	6	3.040066	2.026961	-1.082860
7	2.122733	0.085089	1.315767	1	2.453867	2.225765	-1.991060
7	2.569868	-0.538476	-1.010555	1	4.089182	2.241841	-1.305169
6	3.480157	0.480990	0.928714	6	2.531173	2.857408	0.081592
1	4.221137	-0.245864	1.291743	1	3.316493	2.988574	0.842743
1	3.714457	1.454623	1.366025	1	2.207093	3.850700	-0.241111
6	3.472724	0.531207	-0.594042	6	3.124514	-0.348775	-1.723390
1	3.122689	1.503995	-0.959667	1	2.397962	-0.250382	-2.542176
1	4.472118	0.350864	-0.999872	1	3.064690	-1.359953	-1.324561
6	1.878630	-0.126667	2.732741	1	4.127671	-0.199772	-2.131743
1	2.508900	-0.920451	3.155080	6	0.748321	2.672700	1.783190
1	0.831278	-0.388726	2.894875	1	1.447071	2.805004	2.621427
1	2.081290	0.798465	3.277303	1	-0.065260	2.026036	2.113627
6	2.480969	-0.895183	-2.411298	1	0.319848	3.646373	1.533844
1	2.293862	-0.018016	-3.039343	15	-1.669447	0.453166	-0.488807
1	1.667133	-1.604198	-2.572220	7	-2.898479	0.628580	0.670121
1	3.411904	-1.364360	-2.744633	7	-1.390935	2.113770	-0.610635
15	-1.024755	1.192435	-0.336051	6	-2.492668	-0.030688	-2.046264
7	-1.214314	2.095124	1.057112	1	-2.950537	-1.012448	-1.937740
7	0.239368	2.110812	-0.932962	1	-1.758289	-0.077061	-2.853881
6	-2.491724	1.446222	-1.378389	1	-3.256857	0.712969	-2.284341
1	-3.373385	1.073662	-0.857322	6	-3.040087	2.026944	1.082856
1	-2.388419	0.895672	-2.314542	1	-2.453899	2.225747	1.991065
1	-2.591767	2.515695	-1.575000	1	-4.089208	2.241814	1.305153
6	-0.066129	2.981992	1.266919	6	-2.531186	2.857404	-0.081582
1	0.714772	2.483095	1.851564	1	-3.316498	2.988569	-0.842742
1	-0.393027	3.873983	1.806487	1	-2.207120	3.850696	0.241133
6	0.425948	3.326476	-0.130375	6	-3.124505	-0.348795	1.723375
1	-0.159467	4.152982	-0.556144	1	-2.397949	-0.250402	2.542157
1	1.479701	3.613808	-0.129517	1	-3.064679	-1.359971	1.324539
6	-1.927095	1.608761	2.226409	1	-4.127660	-0.199799	2.131734
1	-1.269661	1.064214	2.914030	6	-0.748308	2.672725	-1.783151
1	-2.737493	0.944661	1.924033	1	-1.447047	2.805035	-2.621397
1	-2.362410	2.458164	2.757896	1	0.065280	2.026070	-2.113583
6	0.455913	2.238250	-2.366091	1	-0.319845	3.646399	-1.533789
1	-0.201029	2.993905	-2.815181	17	-1.601724	-2.797437	-0.448591
1	0.279033	1.284479	-2.865048	17	1.601717	-2.797443	0.448588
1	1.491284	2.529239	-2.554081				
17	-3.109225	-1.547527	-0.033650	Com	plex TS(11a-	→11a')	
6	1.827811	-2.701418	0.622460				
1	1.201567	-3.024040	1.456979	78	-0.047531	-0.874037	-0.232688

15	-1.949902	0.143912	0.104002	1	-4.742697	-0.492714	-1.515718
7	-2.290632	0.675198	1.627738	1	-4.036020	0.262097	-2.958136
7	-2.038848	1.650684	-0.598039	6	-2.931190	2.426148	0.956962
6	-2.541181	2.118054	1.683109	1	-2.787136	3.397697	0.475305
1	-1.652586	2.629388	2.073030	1	-2.086919	2.250029	1.624979
1	-3.383998	2.328797	2.345754	1	-3.849335	2.460451	1.552236
6	-2.841344	2.542295	0.248877	6	-2.366915	-1.778144	-2.115348
1	-3.909552	2.435225	0.017207	1	-3.099877	-2.517511	-1.769782
1	-2.548746	3.577441	0.063864	1	-1.368108	-2.106189	-1.822462
6	-1.995856	-0.040509	2.854284	1	-2.404638	-1.729202	-3.205470
1	-1.146480	0.414380	3.375057	15	2.460522	0.061006	0.335767
1	-1.747147	-1.078458	2.633639	7	3.348087	-1.118536	-0.503995
1	-2 866021	-0.027874	3 515683	7	2 902967	1 306416	-0 717725
6	-2 132155	1 825157	-2 038475	6	3 306116	0 234021	1 940386
1	-3 151970	1 662913	-2.407774	1	3 272401	-0 713405	2 483374
1	-1 457956	1 127580	-2.537531	1	2.818608	1 000259	2.546853
1	-1 821591	2 840326	-2 292180	1	4 351219	0.500361	1 771490
15	2 377706	-0 129170	-0 314688	6	3 830955	-0 583718	-1 780762
7	2.577189	1 396746	-0.807004	1	3.096589	-0.744798	-2 583265
7	3 048141	0 132504	1 224642	1	4 760475	-1.087527	-2.058873
6	3 409141	-1 328875	-1 233707	6	4 043766	0.901572	-1 540569
1	3 102236	-1.328875	-2.283038	0	4.043700	1 085021	-1.026252
1	3.102250	-1.324200	-2.283038	1	4.998282	1.063921	-1.020232
1	1 167051	1.060280	1 168403	1	2 015050	2 507245	-2.4/40//
6	4.407934	-1.009289	-1.108403	0	2.913030	-2.307243	-0.311132
1	2 761054	2.183850	0.101924	1	2.038488	-2.077311	-1.1//2/3
1	2.701934	2.820932	0.008281	1	2.041077	-2.02/423	0.493713
1	4.272308	2.822103	-0.270100	1	3.744969 2.808261	-3.133337	-0.843043
1	4.074330	1.1/1421	0.775064	0	2.606501	2.701277	-0.320890
1	3.030020	0.770194	0.773904	1	5.040042 1.975517	2.01039/	0.313343
1	4.237100	1.009420	2.123307	1	2 702680	2.000004	0.222108
0	2.023472	2.138800	-1.830048	1	2.793089	5.529654	-1.214303
1	1.100000	2.040303	-1.333620	0	0.051005	-0.910331	2.140139
1	1.023017	1.4/2338	-2.393/1/	1	-0./3/193	-0.397070	2.722243
I C	2.0300/0	2.892327	-2.333490	1	-0.2/2248	-1.955554	1.982507
0	5.291517	-0.984578	2.119362	17	0.9/41/0	-0.88/08/	2.090220
1	4.163985	-1.5869/1	1.831197	17	-3.260196	-1.381036	1.281932
1	2.413312	-1.635296	2.143315	Contract	5.3		
l	3.454956	-0.606254	3.131597	Compl	ex 5a'		
0	-1.048922	-2.638343	-0.427083	1.5	2 1 9 2 5 2 0	0 100214	0.005554
1	-1./1/800	-2.862021	0.403954	15	-2.183530	0.100214	-0.095554
1	-1.6003/4	-2.645171	-1.368020	/	-2.92/258	-0.95/108	-1.114618
1	-0.210465	-3.342972	-0.452512	1	-2.884441	-0.545641	1.2/4228
17	-3.738619	-0.853172	-0.556640	6	-3.902495	-1.82/4/0	-0.458444
9				1	-3.490681	-2.841815	-0.386266
Comp	lex IIa'			l	-4.829722	-1.8/1381	-1.036665
				6	-4.138489	-1.221113	0.923192
78	0.161801	-0.026784	0.327603	1	-4.968173	-0.501042	0.904662
15	-2.150944	-0.028556	-0.033140	l	-4.362991	-1.985432	1.670039
7	-2.994353	1.384851	-0.048283	6	-2.550647	-1.209330	-2.488503
7	-2.627822	-0.454317	-1.572954	1	-2.191827	-2.236959	-2.604129
6	-3.938962	1.505789	-1.163565	1	-1.745304	-0.535846	-2.784180
1	-3.604298	2.313718	-1.823599	1	-3.401517	-1.049748	-3.158243
1	-4.938889	1.752351	-0.796291	6	-2.837841	0.150863	2.548645
6	-3.930554	0.152030	-1.877203	1	-3.595012	0.942668	2.613873

1	-1.850622	0.594046	2.689678
1	-3.008880	-0.566249	3.354317
15	2.412919	0.433252	0.221369
7	3.108419	-0.677629	1.302172
7	3.278888	-0.153984	-1.110922
6	3.152290	2.029994	0.716575
1	2.789751	2.314096	1.707001
1	2.893289	2.823678	0.014134
1	4.237070	1.914165	0.757177
6	3.914866	-1.667688	0.585582
1	3.309682	-2.543973	0.317129
1	4.743322	-1.996375	1.220671
6	4.414085	-0.957705	-0.663115
1	5 294160	-0 335229	-0.438162
1	4 692616	-1 667771	-1 446840
6	2 380533	-1 159851	2 463554
1	1 667448	-1 952453	2 205643
1	1 833052	-0.341225	2.203013
1	3 093895	-1 546788	3 196751
6	3 448336	0.648927	-2 306711
1	4 216691	1 427725	-2.300711
1	2 502181	1 128504	-2.177848
1	3 7330/1	0.001038	-2.508574
6	0.065130	2 428450	0 132687
1	0.640581	2.428450	0.132087
1	0.049381	2.887000	-0.072123
1	-0.934080	2.00/30/	1.088500
1	0.490415	2.746071	0.206801
1/	-3.331323	1.9/3981	-0.590891
/8	0.123431	0.3/8898	-0.055/64
1 /	0.262074	-2.098879	-0.369140
Comple	ex 12a'		
15	2 278022	0.017000	0 101170
15	2.278932	0.01/909	-0.1011/0
/	3.325465	1.235020	-0.320830
1	3.352368	-1.044810	0.485974
6	4.6/3459	0.953591	0.204979
1	4.80/283	1.520134	1.130/21
l	5.418790	1.283948	-0.519201
6	4.744243	-0.561891	0.438266
l	5.262391	-1.080593	-0.3/3094
l	5.240345	-0.800960	1.3/9360
6	3.001838	2.569906	-0.801893
l	3.197960	3.302280	-0.015691
l	1.948922	2.618236	-1.075529
l	3.614014	2.800630	-1.675771
6	3.075726	-2.416262	0.886617
1	3.591952	-3.110331	0.219747
1	2.003233	-2.602528	0.841992
1	3.421123	-2.570950	1.910445
15	-2.241775	-0.493938	-0.168676
7	-2.922684	-0.470361	1.377846
7	-3.123982	0.834322	-0.712287
6	-2.889176	-2.015815	-0.934159

1	-2.490093	-2.889910	-0.415031
1	-2.613500	-2.083529	-1.987327
1	-3.976396	-2.011283	-0.837383
6	-3.726828	0.739810	1.573832
1	-3.118661	1.549505	1.996257
1	-4.547634	0.521633	2.263082
6	-4.241240	1.111641	0.192055
1	-5.130971	0.520621	-0.071238
1	-4.504097	2.170926	0.130938
6	-2.208662	-0.973498	2.539976
1	-1.481473	-0.248147	2.923795
1	-1.682818	-1.897313	2.292768
1	-2.931347	-1.203890	3.327008
6	-3.313588	1.098356	-2.126836
1	-4.083427	0.459714	-2.580798
1	-2.374582	0.949452	-2.664033
1	-3.609562	2.141719	-2.259561
6	0.187290	-1.720167	-1.669897
1	-0.415833	-1.463038	-2.544853
1	1.207587	-1.898281	-2.011260
1	-0.192401	-2.647698	-1.236051
78	0.060764	-0.168465	-0.293569
17	-0.123194	1.785713	1.244951

Complex TS(12a'→13a')

15	2.256274	0.031671	-0.064030
7	3.313082	1.279264	0.122392
7	3.409359	-1.140474	-0.092458
6	4.693958	0.822153	0.321033
1	4.930603	0.812160	1.391243
1	5.382807	1.503187	-0.183004
6	4.754194	-0.580396	-0.278668
1	5.007388	-0.552149	-1.345606
1	5.483796	-1.207273	0.236359
6	2.938781	2.622388	0.531199
1	3.114067	2.772266	1.601334
1	1.881098	2.794196	0.326703
1	3.522440	3.353333	-0.032487
6	3.157166	-2.529179	-0.438546
1	3.357611	-2.720755	-1.498280
1	2.117563	-2.780580	-0.223627
1	3.798450	-3.174412	0.165051
15	-2.176150	0.084399	-0.638766
7	-3.227216	-1.202186	-0.301297
7	-3.117356	1.224629	0.178842
6	-2.326824	0.366289	-2.439212
1	-1.944128	-0.502709	-2.981008
1	-1.753347	1.246406	-2.740785
1	-3.376432	0.507646	-2.704183
6	-4.288894	-0.779658	0.617064
1	-3.998605	-0.962568	1.660900
1	-5.203179	-1.342464	0.407741
6	-4.474444	0.707983	0.366370

1	-5.103774	0.884142	-0.519053	1	-3.587163	2.83685	8 -1.135689
1	-4.940062	1.206794	1.220249	1	-1.981930	2.86487	0 -0.368736
6	-2.721790	-2.554321	-0.125385	1	-3.417062	3.24493	8 0.585058
1	-2.285021	-2.709959	0.869444	6	1.616003	0.21565	0 -1.971766
1	-1.962092	-2.776173	-0.876976	1	1.880702	1.18743	9 -2.384297
1	-3.542033	-3.263190	-0.264360	1	1.971724	-0.61554	7 -2.580152
6	-2.967820	2.645220	-0.081008	1	0.492079	0.16093	7 -2.090910
1	-3.446193	2.961394	-1.018139	78	0.060771	-0.02648	6 -0.054168
1	-1.907913	2.905289	-0.124472	17	-0.392669	-0.281807	2.193774
1	-3 415189	3 209513	0 740792				
6	1 363313	0 331761	-1 870321	Compl	ex 4a'		
1	1 483914	1 385213	-2 107040	comp			
1	2.070245	-0 292272	-2.421546	15	1 786311	0 850648	-0.085072
1	0 389912	-0.014991	-2 243253	7	-2 990034	0 445181	-1 205284
78	0.073554	-0.066107	0.070607	7	-2.816253	0.712785	1 245122
17	-0 588935	-0 427577	2 278298	6	-4 210836	-0.001311	-0 533088
17	0.500755	0.427577	2.270290	1	-4 208544	-1 090864	-0.405579
Compley	v 139'			1	-5.081647	0.281278	-1.132666
Compie	A 15a			6	-4.213400	0.201278	-1.132000
15	2 284104	0.058633	0 220074	1	-4.213400	1 72/008	0.726305
13	2.264104	1 204604	-0.220974	1	4.014525	0.165184	0.720303
7	2 289207	1.294004	0.102442	1	-4.818900	0.162261	2 488406
6	5.500207	-1.13/040	0.008332	0	-2.089324	1 2512201	-2.400490
0	4.020033	0.774332	0.009001	1	-2.382004	-1.231230	-2.413238
1	4.019709	0.743091	1.700712	1	-1./040/9	0.249881	-2.890012
I (5.442262	1.423211	0.282441	I (-3.495525	0.068555	-3.191015
0	4./50001	-0.626364	0.025322	0	-2.302831	1.340460	2.513905
1	5.1/521/	-0.598469	-0.989049	1	-2./4928/	2.411491	2.533413
I	5.386597	-1.265398	0.646483	1	-1.439285	1.223/74	2./34138
6	2.923170	2.611720	0.54/264	1	-3.063217	0.845692	3.311564
l	2.824639	2.660822	1.63//92	15	1.786304	0.850615	0.085126
l	1.961040	2.866109	0.100366	7	2.990289	0.445093	1.204997
l	3.653978	3.356023	0.223741	1	2.816008	0.713227	-1.245196
6	3.166682	-2.525908	-0.423922	6	1.554992	2.633691	0.405884
1	3.466645	-2.681990	-1.467156	1	1.009886	2.789395	1.338699
1	2.111202	-2.781814	-0.316800	1	1.031466	3.130615	-0.408841
1	3.744263	-3.200865	0.210776	1	2.551493	3.067778	0.505985
15	-2.257658	0.008154	-0.593243	6	4.211051	-0.001054	0.532560
7	-3.258162	-1.243981	-0.041899	1	4.209023	-1.090605	0.405002
7	-3.147481	1.216897	0.184325	1	5.081903	0.281717	1.131997
6	-2.553324	0.100783	-2.396007	6	4.213240	0.704002	-0.816587
1	-2.163015	-0.802126	-2.872756	1	4.614448	1.725251	-0.726885
1	-2.039344	0.965721	-2.822915	1	4.818580	0.165569	-1.551183
1	-3.623871	0.174609	-2.598034	6	2.690308	-0.162311	2.488334
6	-4.257760	-0.739310	0.903651	1	2.583152	-1.251318	2.415202
1	-3.892407	-0.817756	1.936997	1	1.765455	0.249575	2.896682
1	-5.177537	-1.325047	0.816742	1	3.496434	0.068791	3.190618
6	-4.480186	0.715659	0.523766	6	2.502076	1.340149	-2.514178
1	-5.176968	0.801057	-0.323654	1	2.748856	2.411080	-2.534484
1	-4.886069	1.293459	1.358122	1	1.438346	1.223657	-2.733714
6	-2.729923	-2.571855	0.224438	1	3.061754	0.844697	-3.311909
1	-2.250867	-2.640173	1.209519	6	-1.555210	2.633842	-0.405221
1	-1.997922	-2.849267	-0.535993	1	-1.010074	2.789937	-1.337952
1	-3.545571	-3.298340	0.180267	1	-2.551725	3.067933	-0.505195
6	-3.032484	2.608049	-0.215247	1	-1.031730	3.130469	0.409684

78	-0.000028	-0.555122	0.000059
17	1.650780	-2.348054	-0.081862

Coordinates of the optimized geometries at B3PW91/BS1 for complexes 8a and 9a of route B in Å.

Comp	olex 8a of Fig.	S3(c)		78	0.166192	-0.829951	-0.288999
70	0.00000	0 771 700	0.505400	15	-1.807197	0.084978	0.154675
78	0.290922	-0.7/1780	-0.595428	7	-2.035813	1.184212	1.361388
15	-1.813324	0.116620	0.129217	7	-2.662825	0.976362	-0.975319
7	-2.040342	0.800817	1.613884	6	-2.992593	2.242036	1.026709
1	-2.600971	1.362046	-0.6/1/1/	1	-2.456091	3.192881	0.931592
6	-2.971388	1.931149	1.629055	1	-3.738271	2.345497	1.819737
l	-2.420359	2.842515	1.886877	6	-3.643802	1.824059	-0.288854
l	-3.749258	1.777510	2.382706	1	-4.571293	1.262685	-0.109020
6	-3.570299	2.004629	0.226331	1	-3.882071	2.684968	-0.916940
1	-4.530386	1.472814	0.179633	6	-1.514032	1.124993	2.710419
1	-3.735543	3.035351	-0.094460	1	-1.087327	2.094227	2.984081
6	-1.547358	0.281902	2.873687	1	-0.726120	0.377344	2.777548
1	-1.068317	1.083002	3.444557	1	-2.303904	0.871649	3.426034
1	-0.814286	-0.503767	2.691770	6	-3.124996	0.364821	-2.211922
1	-2.367125	-0.133383	3.470485	1	-4.044442	-0.214078	-2.056974
6	-3.052451	1.200627	-2.046281	1	-2.357878	-0.294735	-2.614312
1	-4.008519	0.664282	-2.095285	1	-3.323129	1.149965	-2.944796
1	-2.314628	0.649172	-2.627037	15	1.403588	1.119044	0.674728
1	-3.179321	2.186379	-2.499386	7	2.088428	2.053145	-0.524914
15	1.567387	0.754197	0.829247	7	2.906673	0.607833	1.193550
7	1.946703	2.148131	-0.017086	6	3.547055	2.029062	-0.601751
7	3.184934	0.345545	0.956300	1	3.946321	2.968017	-0.195624
6	1.950066	-1.688063	-1.425780	1	3.874801	1.943718	-1.642216
1	2.708428	-0.995044	-1.795132	6	3.982307	0.825310	0.226336
1	2.396404	-2.367966	-0.698214	1	4.097198	-0.073433	-0.392552
1	1.582816	-2.275031	-2.276120	1	4.922517	1.009179	0.752096
6	3.371362	2.415367	-0.190554	6	1.378521	3.068494	-1.271509
1	3.690580	3.183321	0.527303	1	1.723355	4.070150	-0.987986
1	3.571571	2.791580	-1.198419	1	0.308420	3.004808	-1.071578
6	4.074600	1.087898	0.066006	1	1.534356	2.936356	-2.346020
1	4.232813	0.526318	-0.864372	6	3.120938	-0.382160	2.227327
1	5.047229	1.228891	0.544167	1	3.290725	-1.374442	1.795453
6	1.017202	3.233571	-0.241613	1	2.254442	-0.430677	2.886925
1	1.229541	4.081015	0.422024	1	3.992404	-0.100133	2.825046
1	-0.004877	2.900182	-0.056918	6	0.275406	0.021075	-2.254874
1	1.077772	3.580824	-1.277473	1	-0.110199	-0.729717	-2.956290
6	3.674317	-0.877711	1.557091	1	-0.280372	0.947991	-2.411725
1	4.044686	-1.574485	0.797347	1	1.324413	0.198211	-2.501967
1	2.871969	-1.368762	2.108088	17	-3.200591	-1.556234	0.575471
1	4.490863	-0.651996	2.249892	6	0.082048	-2.077977	1.466237
6	0.373840	0.437414	-2.270010	1	-0.363816	-3.017927	1.117907
1	-0.095686	-0.107666	-3.096690	1	1.092558	-2.297564	1.816617
1	-0.151826	1.382620	-2.126010	1	-0.514285	-1.735996	2.316547
1	1.407160	0.654795	-2.541831	17	2.126972	-2.096840	-0.913845
17	-3.317769	-1.530302	-0.000020			-	-
17	0.243287	-2.568660	1.198351	Com	olex 8a of Figu	ure S3(e)	

Complex **8a** of Figure S3(d)

78 0.290482 -0.771385 -0.595463

15	-1.813877	0.116805	0.129828	6	1.806194	2.984231	0.751637
7	-2.041769	0.799035	1.615195	1	2.577567	3.719618	1.001760
7	-2.601225	1.363145	-0.670064	1	1.309708	2.682231	1.684605
6	-2.970445	1.931205	1.630964	6	-0.417303	2.653408	-2.249216
1	-2.417406	2.841573	1.888137	1	-1.366345	3.109981	-1.951597
1	-3.748073	1.779259	2.385204	1	-0.637651	1.727929	-2.785364
6	-3.570050	2.005515	0.228676	1	0.098126	3.342337	-2.933532
1	-4.530271	1.473897	0.182212	6	3.574506	1.217709	0.749360
1	-3.735228	3.036434	-0.091527	1	4.382579	1.955914	0.805901
6	-1.545167	0.281978	2.874308	1	3.916564	0.361785	0.163788
1	-1.062485	1.083340	3.441786	1	3.326743	0.870442	1.759664
1	-0.814318	-0.505545	2.691485	15	-1.715592	-0.413643	0.470252
1	-2.363643	-0.130416	3.474837	7	-2.135554	0.977024	1.323799
6	-3.053225	1.202896	-2.044604	7	-2.853773	-0.122302	-0.761180
1	-4.009410	0.666766	-2.093698	6	-2.295169	-1.811287	1.505325
1	-2.315726	0.651780	-2.626094	1	-1.692133	-1.842561	2.417450
1	-3.180072	2.189053	-2.496844	1	-3.349846	-1.667549	1.759813
15	1.567640	0.754301	0.828312	1	-2.161456	-2.758178	0.972661
7	1.949013	2.147193	-0.019055	6	-3.000543	1.861898	0.551589
7	3.184665	0.344078	0.956813	1	-2.419447	2.603281	-0.015182
6	3.374159	2.413226	-0.190459	1	-3.666299	2.402832	1.233249
1	3.693115	3.180724	0.528025	6	-3.785775	0.938565	-0.366068
1	3 576126	2 789439	-1 197972	1	-4 652893	0.517757	0 168183
6	4 075789	1 085106	0.066884	1	-4 151986	1 458316	-1 258000
1	4 233972	0.523117	-0.863253	6	-1 435279	1 542042	2 458999
1	5 048251	1 225154	0.545665	1	-0 794026	2 385254	2 167211
6	1 021005	3 233905	-0 243772	1	-0.809728	0 785737	2 935054
1	1 233673	4 080697	0 420612	1	-2 168439	1 907519	3 188349
1	-0.001671	2 901637	-0.060348	6	-3 483218	-1 242054	-1 452143
1	1 083056	3 581713	-1 279357	1	-4 306990	-1 677683	-0.866077
6	3 672351	-0 879194	1 558926	1	-2 754175	-2.025568	-1 664155
1	4 041592	-1 577434	0 799971	1	-3 888296	-0.891930	-2 407528
1	2 869362	-1 368397	2 110632	17	1 113188	-0.912178	2 256366
1	4 489317	-0.653823	2 251343	6	-0 185367	-1 350589	-2.096831
6	0 372704	0 437926	-2 270017	1	0 703971	-1 289705	-2 729178
1	-0.097496	-0 107016	-3 096410	1	-0 576427	-2.374714	-2 147414
1	-0 152629	1 383256	-2.125614	1	-0.947401	-0.653951	-2.454788
1	1 405912	0.655094	-2 542440	17	2 490996	-2.213543	-0 684490
17	-3 318185	-1 530235	-0.002396	1,	, 0,,, 0	2.2100.0	0.001.000
6	1.949298	-1.687655	-1.426477	Comr	olex 9a of Fig.	S4(c)	
1	1.581761	-2.274398	-2.276847			~ (0)	
1	2.707529	-0.994523	-1.795878	78	0.364404	-0.990306	-0.111768
1	2.395771	-2.367742	-0.699160	15	1.502670	1.018001	-1.111731
17	0 242397	-2 568932	1 197265	7	0.476297	2.348551	-1.054655
- /	0.2.2000	2.000002	11177200	7	2.526594	1.686855	0.019726
Comr	olex 9a of Fig	S4(b)		6	0.978949	3.453073	-0.235139
comp		51(0)		1	0.156310	3.962747	0.273880
78	0.394089	-0.987910	-0.141334	1	1.483569	4.185745	-0.880232
15	1.475383	1.080420	-1.047920	6	1.958225	2.822581	0.742813
7	0.395707	2.373487	-1.075146	1	2.751509	3.516118	1.031279
7	2.418762	1.820915	0.113344	1	1.461840	2.466540	1.654278
6	0.819785	3.526994	-0.277012	6	-0.357572	2.699596	-2.192027
1	-0.043681	4.007459	0.196367	1	-1.255668	3.220959	-1.854718
1	1.302044	4.266683	-0.933617	1	-0.668028	1.800629	-2.725144

1	0.176860	3.354139	-2.892072
6	3.681598	1.021561	0.589413
1	4.507611	1.734582	0.663776
1	3.987554	0.193095	-0.048479
1	3.452001	0.625676	1.583565
15	-1.736091	-0.351258	0.465569
7	-2.134156	1.106393	1.194606
7	-2.885002	-0.161141	-0.770658
6	-2.310469	-1.657872	1.609804
1	-1.710147	-1.613226	2.520036
1	-3.363811	-1.500530	1.852378
1	-2.173599	-2.643665	1.159690
6	-3.081369	1.895914	0.417151
1	-2.568291	2.639956	-0.204232
1	-3.751148	2.431525	1.096471
6	-3.846521	0.888824	-0.423298
1	-4.687141	0.471063	0.151025
1	-4.248201	1.335641	-1.336767
6	-1.456641	1.753099	2.297249
1	-0.882902	2.625448	1.964501
1	-0.773301	1.061668	2.787378
1	-2 195311	2 092295	3 031269
6	-3 483433	-1 333797	-1 393498
1	-4 282097	-1 766488	-0 775218
1	-2 732982	-2 101103	-1 576167
1	-3 911838	-1.050127	-2 358174
17	1 080835	-0 754008	2.330171
6	-0.206262	-1 415057	-2.055694
1	0.682846	-1 373147	-2 685250
1	-0 595311	-2 438081	-2.005250
1	-0.964581	-0 732519	-2 440527
17	2 450750	-0.732317	-0 593535
1 /	2.430730	-2.237420	-0.5755555
Comp	olex 9a of Fig.	S4(d)	
78	0 329588	-1 070710	0.082016
15	1 895661	0 496862	-1 107425
7	1 049613	1 922811	-1 338066
7	2 971238	1 245507	-0.073019
6	1 670247	3 104132	-0 739072
1	0 907094	3 794780	-0 370663
1	2 263615	3 630255	-1 499290
6	2.555635	2 572711	0 378979
1	3 433814	3 203395	0.536222
1	2 015878	2 493092	1 331027
6	0 139275	2 114368	-2 451311
1	-0 706730	2.732609	-2 142420
1	-0 245506	1 149105	-2.172720
1	0.640273	2 605055	_3 204752
6	3 999990	0 554510	0.677165
1	4 900074	1 174007	0 715569
1	4 255050	-0 384141	0 184418
1	3 669987	0 336979	1 698463
-	2.00//0/	0.000777	1.0/0100

15 -1.795351

0.036093

7	-2.028555	1.593988	1.207850
7	-2.940040	0.307179	-0.699477
6	-2.605660	-1.069352	1.775413
1	-2.022641	-1.050210	2.699142
1	-3.624703	-0.736987	1.986071
1	-2.620061	-2.098663	1.406511
6	-2.922666	2.409445	0.394852
1	-2.359387	3.030057	-0.318367
1	-3.503775	3.080433	1.036177
6	-3.814738	1.421523	-0.329999
1	-4.634861	1.088501	0.326535
1	-4.259628	1.853414	-1.231078
6	-1.029343	2.308772	1.973487
1	-0.378283	2.924006	1.338473
1	-0.406271	1.613263	2.534610
1	-1.526930	2.972677	2.687900
6	-3.641916	-0.829127	-1.278158
1	-4.418349	-1.229066	-0.608869
1	-2.937073	-1.623507	-1.519782
1	-4.125589	-0.515499	-2.207545
17	0.998727	-0.708017	2.326924
6	1.899409	-2.443704	-0.064606
1	1.478215	-3.402877	0.257965
1	2.725418	-2.187180	0.601218
1	2.257310	-2.541115	-1.091033
17	-0.343235	-1.805955	-2.092092

Complex 9a of Fig. S4(e)

78	0.346745	-1.000312	-0.109554
15	1.527035	0.993710	-1.104960
7	0.522851	2.339718	-1.065985
7	2.556189	1.656913	0.023214
6	1.048155	3.452179	-0.272045
1	0.235638	3.987372	0.226592
1	1.563860	4.161656	-0.934056
6	2.018062	2.825118	0.717728
1	2.829141	3.507553	0.982362
1	1.519198	2.507776	1.642012
6	-0.329682	2.677049	-2.192904
1	-1.216580	3.211379	-1.846636
1	-0.657263	1.771098	-2.703275
1	0.196001	3.314428	-2.914968
6	3.697104	0.977650	0.603984
1	4.552124	1.659434	0.627603
1	3.956057	0.105758	0.004127
1	3.472065	0.640956	1.620592
15	-1.736684	-0.315280	0.470128
7	-2.092607	1.177546	1.141070
7	-2.903605	-0.153135	-0.754509
6	-2.321924	-1.572187	1.664821
1	-1.705606	-1.514035	2.563355
1	-3.367273	-1.382928	1.919762
1	-2.216205	-2.574310	1.243173

0.549774

6	-3.098623	1.926654	0.398308	
1	-2.633811	2.677293	-0.252616	
1	-3.755269	2.452319	1.098369	
6	-3.871319	0.888531	-0.397281	
1	-4.687374	0.469311	0.210742	
1	-4.308991	1.309455	-1.306458	
6	-1.394133	1.851227	2.213351	
1	-0.937152	2.783354	1.863246	
1	-0.608419	1.214052	2.616388	
1	-2.092400	2.098383	3.020993	
6	-3 505118	-1 342220	-1 342595	
1	-4 281149	-1 775771	-0.696565	
1	-2 750500	-2 102933	-1 535386	
1	-3 963679	-1 077314	-2 298668	
17	1 075911	-0.761672	2.220000	
6	-0 233881	-1.420013	-2.051/186	
1	-0.233881	1 277225	2.031400	
1	0.031833	-1.377323	-2.063622	
1	-0.022822	-2.44304/	-2.074322	
17	-0.994687	-0.737484	-2.431105	
1/	2.411/52	-2.283610	-0.590586	
TS of	Figure S10			
78	0 936059	-1 299817	-0 290850	
6	2 478105	-2.426066	0 379008	
1	2 670261	-2 175241	1 426333	
1	3 366063	-2 188202	-0 212774	
1	2 250631	-3 489888	0.292003	
15	1 913266	0 759252	0.122235	
7	1.901262	1 922086	-1.051160	
6	1.501202	3 282675	-0.565566	
1	0.701506	3.202073	-0.305300	
1	2 444860	2 062157	-0.910773	
6	2.444609	3.903137	-0.930320	
1	1./31901	3.194/90	0.939943	
1	2.742925	3.409234	1.333489	
1	1.03/821	3.893380	1.432305	
1	1.351292	1.818891	1.295243	
6	2.0/3549	1.685910	-2.46/913	
l	1.228814	2.102315	-3.026395	
l	2.111620	0.612242	-2.660591	
I	2.998267	2.142767	-2.836585	
6	1.390454	1.461617	2.702461	
1	2.389959	1.600242	3.134753	
1	1.096149	0.418199	2.827904	
1	0.681885	2.085440	3.251931	
17	4.105670	0.612415	0.687326	
6	-0.045891	-3.049760	-0.748868	
1	0.491912	-3.614471	-1.519757	
1	-1.041945	-2.798517	-1.134289	
1	-0.163867	-3.701228	0.124363	
15	-2.920627	0.927554	0.511918	
7	-3.332503	-0.517813	1.199508	
6	-4.707174	-0.963951	0.959736	
1	-5.288335	-0.843868	1.882211	

1	-4.724678	-2.020330	0.678297
6	-5.232361	-0.073477	-0.160162
1	-5.061932	-0.529700	-1.144756
1	-6.300084	0.131067	-0.056004
7	-4.470901	1.175616	-0.053911
6	-2.503156	-1.270000	2.119619
1	-2.978427	-1.327715	3.104780
1	-1.531605	-0.787173	2.231853
1	-2.337971	-2.285413	1.748422
6	-4.777740	2.225500	-1.009200
1	-4.616893	1.893471	-2.042009
1	-4.149368	3.097457	-0.821008
1	-5.821411	2.527195	-0.894585
17	-1.797718	0.278180	-1.559143

product of Figure S10

78	0.657495	-1.271632	-0.304174
6	2.026170	-2.603200	0.418600
1	2.245374	-2.380941	1.468357
1	2.962271	-2.515038	-0.143302
1	1.668777	-3.633511	0.344413
15	1.883883	0.620052	0.147868
7	2.241548	1.691434	-1.057490
6	2.194881	3.097686	-0.665600
1	1.349563	3.583816	-1.168616
1	3.111446	3.616754	-0.962486
6	2.023109	3.101672	0.854105
1	2.995872	3.169624	1.360921
1	1.403581	3.935980	1.191227
7	1.367043	1.834099	1.184636
6	2.542246	1.338401	-2.426806
1	1.862683	1.857397	-3.111312
1	2.409822	0.264149	-2.567408
1	3.572626	1.602334	-2.689425
6	1.141261	1.564074	2.592628
1	2.077435	1.550208	3.166228
1	0.644571	0.598840	2.707314
1	0.487844	2.335292	3.007201
17	3.938586	0.182526	1.039834
6	-0.486819	-2.925516	-0.795977
1	0.065968	-3.584298	-1.476643
1	-1.417979	-2.622926	-1.285415
1	-0.734151	-3.512220	0.096767
15	-2.688787	0.979958	0.675185
7	-3.442060	-0.417381	1.105539
6	-4.798003	-0.592295	0.572460
1	-5.519631	-0.430252	1.381375
1	-4.927822	-1.608741	0.193688
6	-4.941109	0.447288	-0.535055
1	-4.687512	0.027814	-1.516689
1	-5.952108	0.856180	-0.585432
7	-3.988030	1.512691	-0.201102
6	-2.937413	-1.370135	2.076626

1	-3.579072	-1.389174	2.963169	1	-3.174184	3.373793	-0.711848
1	-1.926980	-1.094199	2.379614	1	-4.901459	3.188927	-1.049710
1	-2.903506	-2.371876	1.641448	17	-1.165781	0.241494	-1.305926
6	-3.936050	2.678530	-1.066423				
1	-3.701333	2.395940	-2.098549				

Coordinates of the optimized geometries at B3PW91–D3/BS2 for route C in Å.

Com	plex 3a			1	-0.384366	-3.326696	1.576251
70	0.000021	1 226592	0.00000	17	-3.138819	0.260029	1.721268
10	-0.000021	1.230365	0.000009	G	1 10		
1	1.309320	2.021031	-0.210219	Comp	lex IUa		
1	1.230049	2 5 4 2 2 1 2	-1.221009	70	0 160125	1 202064	0 171927
1	2.421071	2.343213	-0.111/40	/0	-0.109133	-1.202004	-0.1/182/
15	1.143627	0.205004	0.307390	13	2 211200	0.202214	0.240394
13	1.0/3000	-0.303904	-0.14103/	7	2.311390	0.934021	-1.033333
	2.382/93	-0.011183	1.190810		1.250759	1./33/0/	0.965910
1	3.020019	-1.998357	1.319008	0	2.702729	2.32/338	-0.810829
1	2.555515	-2.442559	2.203315	1	2.308522	2.981490	-1.362063
I	4.111534	-2.052317	1.448224	I	3.849641	2.400836	-0.90/881
6	2.5838/3	-2.699611	0.030303	6	2.311682	2.68/293	0.61313/
1	3.398380	-2./221/4	-0./0/442	1	3.145234	2.6038/1	1.322610
1	2.262720	-3./26/8/	0.216640	I	1.915602	3.702833	0.6/1261
1	1.456194	-1.920065	-0.480054	6	2.778340	0.236083	-2.220617
6	2.928791	0.355901	2.214175	l	2.611298	0.846593	-3.111/10
l	2.66/84/	-0.036616	3.202229	1	2.211530	-0.689505	-2.332345
l	2.364173	1.275307	2.053105	I	3.844792	-0.002845	-2.148917
I	3.998901	0.587580	2.197831	6	0.754254	1.789658	2.330847
6	0.851071	-2.350133	-1.723318	1	1.556104	1.646424	3.066026
1	1.588148	-2.419694	-2.533879	1	0.000512	1.014600	2.484924
1	0.071431	-1.646208	-2.018832	1	0.286536	2.761255	2.499739
1	0.384562	-3.326675	-1.576473	15	-1.711641	0.380192	-0.147102
17	3.138825	0.260160	-1.721223	7	-3.140037	0.420506	0.618614
6	-1.369455	2.821756	0.216159	7	-1.838153	1.845191	-0.830449
1	-1.239488	3.237882	1.221867	6	-3.961193	1.592254	0.273508
1	-2.421142	2.543129	0.111022	1	-4.425580	1.988994	1.176951
1	-1.143604	3.611249	-0.507192	1	-4.749144	1.275201	-0.416219
15	-1.673700	-0.305922	0.141056	6	-3.007425	2.610129	-0.366740
7	-2.582908	-0.611204	-1.196746	1	-3.469291	3.118394	-1.213649
6	-3.026562	-1.998425	-1.319613	1	-2.666034	3.362192	0.351238
1	-2.553332	-2.442546	-2.203294	6	-3.701956	-0.658002	1.415309
1	-4.111462	-2.052514	-1.448309	1	-3.988867	-0.273298	2.395640
6	-2.583814	-2.699652	-0.030296	1	-2.958419	-1.444090	1.545093
1	-3.398316	-2.722208	0.707456	1	-4.580698	-1.073465	0.916171
1	-2.262644	-3.726827	-0.216605	6	-0.807680	2.499334	-1.618501
7	-1.456142	-1.920074	0.480017	1	-1.247413	2.889041	-2.538216
6	-2.928752	0.355862	-2.214166	1	-0.027646	1.782562	-1.872090
1	-2.667585	-0.036612	-3.202181	1	-0.366116	3.318276	-1.046124
1	-2.364185	1.275278	-2.052921	6	1.137014	-2.837704	-0.162268
1	-3.998870	0.587510	-2.198027	1	1.402360	-3.016286	0.885180
6	-0.850850	-2.350156	1.723187	1	0.679444	-3.737983	-0.574010
1	-1.587807	-2.419730	2.533855	1	2.060804	-2.623946	-0.707633
1	-0.071161	-1.646240	2.018592	17	3.146239	-0.588718	1.462114

6	-1.612254	-2.665039	-0.676498	15	-1.231415	0.649070	-0.062285
1	-2.629600	-2.295625	-0.827311	7	-1.061226	1.629374	1.235559
1	-1.291973	-3.155761	-1.599479	7	-0.504380	1.683442	-1.141502
1	-1.631423	-3.412862	0.122256	6	-0.544372	2.954271	0.893641
				1	0.485922	3.034707	1.251047
Comp	lex TS(10a \rightarrow	11a)		1	-1.149769	3.731940	1.365610
				6	-0.614088	3.056767	-0.631373
6	-3.292405	1.573772	1.620583	1	-1.562746	3.505775	-0.955785
6	-2.859022	2.552608	0.529174	1	0.205959	3.654829	-1.032927
6	-3.155700	-0.918996	1.963010	6	-1.471765	1.307306	2.584815
6	-1.007767	2.708233	-1.135646	1	-0.728021	1.676853	3.293680
6	2.186195	-1.930097	-0.023101	1	-1.542525	0.223747	2.699552
6	4.092615	1.508019	-0.391866	1	-2.441725	1.754746	2.824843
6	4.118417	1.071095	1.072870	6	-0.708430	1.499607	-2.568453
6	2.730293	0.887227	-2.429346	1	-1.683033	1.884728	-2.893444
6	2.388730	0.318237	2.750307	1	-0.651548	0.438061	-2.814192
6	-1.012347	-2.719209	-0.353801	1	0.077864	2.024745	-3.113364
7	-2.807448	0.258419	1.195743	15	1.767310	-0.574257	0.160607
7	-1.625558	1.988791	-0.035034	7	2.572684	-0.061356	-1.230524
7	3.009498	0.739244	-1.013197	7	2.053199	0.875122	0.991417
7	2.727709	0.735960	1.400833	6	2.826038	-1.876993	0.886189
17	-2.942030	-0.046222	-1.849633	1	2.826279	-2.742550	0.218634
15	-1.775296	0.330712	-0.074471	1	2.424380	-2.188656	1.853708
15	1.926246	0.165991	0.079647	1	3.849280	-1.514002	1.005069
78	0.032243	-0.910412	-0.123370	6	2.976191	1.338563	-1.136233
1	-2.840744	1.823186	2.587512	1	2.202986	1.994169	-1.560215
1	-4.379088	1.560985	1.734531	1	3.908811	1.500876	-1.684628
1	-3.629361	2.647604	-0.248427	6	3.148104	1.604495	0.351571
1	-2.651122	3.544783	0.932643	1	4.130944	1.252705	0.702417
1	-2.898191	-0.766287	3.015674	1	3.065100	2.669259	0.585809
1	-2.600960	-1.781489	1.597348	6	2.253129	-0.588902	-2.541746
1	-4.226130	-1.129277	1.884923	1	1.606337	0.089304	-3.108648
1	-1.675717	2.790797	-2.002006	1	1.737688	-1.547233	-2.449017
1	-0.093818	2.196684	-1.441456	1	3.168750	-0.750499	-3.118439
1	-0.741005	3.710226	-0.795605	6	2.035772	0.856312	2.441083
1	2.383448	-2.245569	-1.046459	1	2.953487	0.431653	2.871931
1	1.659025	-2.705995	0.539420	1	1.185944	0.267969	2.792570
1	3.136127	-1.800874	0.501693	1	1.920121	1.874503	2.820921
1	3.884084	2.580220	-0.486732	6	-2.342959	-2.275585	0.067762
1	5.038893	1.290176	-0.891600	1	-3.018355	-1.906121	0.843819
1	4.764948	0.195188	1.218356	1	-2.841030	-2.185163	-0.901566
1	4.468014	1.870463	1.728122	1	-2.113762	-3.333792	0.263982
1	2.517433	1.931849	-2.680016	17	-3.300598	0.735663	-0.576471
1	1.864346	0.280220	-2.700142				
1	3.587137	0.546763	-3.014879	Comp	olex 5a		
1	2.945678	-0.577577	3.048196	1			
1	1.319642	0.103977	2.805635	15	1.548823	-0.040784	0.130484
1	2.617389	1.126150	3.447531	7	2.101418	0.892503	-1.123898
1	-2.051421	-2.646732	-0.680832	7	1.576064	1.185011	1.227013
1	-0.452629	-3.286608	-1.106825	6	2.887083	2.011492	-0.603200
1	-0.974176	-3.273722	0.590864	1	2.855587	2.837393	-1.316879
				1	3.935848	1.712546	-0.466083
Comp	lex 11a			6	2.237004	2.391862	0.731875
				1	2.987677	2.739949	1.446693
78	-0.470683	-1.354002	0.070457				

1	1.482676	3.172819	0.596800
6	2.510516	0.287683	-2.375331
1	2.480034	1.040923	-3.165856
1	1.814409	-0.512926	-2.635364
1	3.525088	-0.127819	-2.321389
6	1.309870	1.007341	2.634700
1	2.235876	0.889459	3.209897
1	0.693267	0.117733	2.778525
1	0.761245	1.867487	3.025655
15	-1.556914	0.795298	-0.373381
7	-2.303358	1.422903	1.020623
7	-0.770137	2.263609	-0.741135
6	-2.901666	0.626187	-1.598219
1	-3 600128	-0 137210	-1 254840
1	-2.484576	0 304066	-2.555689
1	-3 422281	1 578772	-1 719366
6	-1 866390	2 792032	1 286304
1	-1 012775	2.792032	1.200304
1	-2 679238	3 367506	1 739885
6	-1 460830	3 3 5 8 6 7 5	-0.063339
1	-2 345924	3 695382	-0.627649
1	-0 786080	4 213308	0.027049
6	-2 515455	0.575174	2 179621
1	-1.613003	0.375174	2.179021
1	-2 825113	-0.421238	1 862717
1	-2.825115	0.421238	2 707542
6	-0.383906	2 521040	-2.197342
1	1 22/221	2.321949	-2.113000
1	0.066815	1 630160	2.550324
1	0.366248	2 216717	2 138580
6	0.500248	2 022120	-2.136360
1	1 400620	-3.033120	0.123113
1	1.499020	-3.130207	-0.393249
1	1.104412	-3.120423	0.022125
1	-0.033707	-5.845500	-0.055155
1/	5.505780	-1.219//1	0.00/919
/8	-0.300074	-1.191125	-0.09810/
1/	-2.3/035/	-2.444416	-0.189999
Comp	olex 12a		
78	0.092619	-1.093781	-0.103537
15	-1.635202	0.128230	-0.229021
7	-3.041965	0.017939	0.555257
7	-1.974337	1.461416	-1.071868
6	-4.031215	1.012426	0.108030
1	-4.528555	1.441152	0.978371
1	-4.776945	0.506540	-0.511343
6	-3.252468	2.079247	-0.680320
1	-3.791870	2.390193	-1.575008
1	-3.035856	2.962534	-0.072713
6	-3.425129	-1.053017	1.460937
1	-3.745148	-0.625682	2.412653
1	-2.571358	-1.708258	1.632509
1	-4.242270	-1.632776	1.026093

6	-1.047778	2.170645	-1.935668
1	-1.535141	2.387140	-2.887545
1	-0.174803	1.546188	-2.120532
1	-0.731527	3.099584	-1.457618
15	1.543055	0.631560	0.583122
7	2.618805	1.251274	-0.563162
7	0.781727	2.129825	0.851939
6	2.528978	0.192746	2.045219
1	3.161504	-0.659476	1.790036
1	1.861026	-0.104987	2.856963
1	3.149518	1.035363	2.356430
6	2.424588	2.690568	-0.760053
1	1.813253	2.878496	-1.653179
1	3.390588	3.182419	-0.904285
6	1.717630	3.197507	0.489093
1	2.436258	3.399766	1.297633
1	1.163612	4.118902	0.293790
6	2.967508	0.478502	-1.744785
1	2.185318	0.521020	-2.515850
1	3.129640	-0.565660	-1.477470
1	3.895039	0.870523	-2.168883
6	0.010465	2.336586	2.066846
1	0.643005	2.506994	2.948554
1	-0.619134	1.465854	2.268180
1	-0.643967	3.201163	1.935221
17	1.886407	-2.660668	0.023149
6	-1.098561	-2.752268	-0.719985
1	-0.581526	-3.185404	-1.579096
1	-1.077080	-3.460298	0.112492
1	-2.138312	-2.562702	-0.995615

Complex TS($12a \rightarrow 13a$)

78	-0.112988	-0.948654	-0.013215
15	1.704729	0.093768	0.124571
7	2.826323	0.448959	-0.990374
7	2.397305	0.876250	1.359140
6	4.035030	1.039894	-0.395286
1	4.423461	1.815777	-1.055643
1	4.795261	0.260189	-0.281833
6	3.605532	1.615793	0.961758
1	4.382230	1.481977	1.715701
1	3.358353	2.679632	0.892955
6	2.866883	-0.132893	-2.322112
1	3.106285	0.643574	-3.050188
1	1.890388	-0.554833	-2.565239
1	3.618241	-0.925723	-2.372129
6	1.771633	1.112025	2.649520
1	2.446645	0.801862	3.448971
1	0.850313	0.532548	2.717906
1	1.531841	2.172284	2.763295
15	-1.757765	0.567807	-0.445015
7	-2.629911	1.151992	0.880940
7	-1.156126	2.087306	-0.879633

6	-2.976306	0.001116	-1.663855
1	-3.489204	-0.873981	-1.260039
1	-2.461937	-0.294898	-2.580913
1	-3.695043	0.795904	-1.872045
6	-2.316583	2.565753	1.110333
1	-1.461621	2.671409	1.794719
1	-3.180515	3.066441	1.555012
6	-1.972818	3.130261	-0.259150
1	-2.882949	3.343324	-0.839875
1	-1.390528	4.051723	-0.183197
6	-2.769960	0.322048	2.067661
1	-1.855271	0.311329	2.676495
1	-3.005420	-0.704471	1.783668
1	-3.592017	0.704501	2.677083
6	-0.657466	2.317785	-2.222686
1	-1.459295	2.410257	-2.967835
1	-0.001822	1.495548	-2.519868
1	-0.066081	3.236013	-2.233214
17	-1.621540	-2.806970	0.063231
6	1.679046	-2.248678	0.460748
1	1.320925	-2.681328	1.394943
1	1.601887	-2.936601	-0.381546
1	2.737526	-2.002763	0.593216
Com	plex 13a		
	1		
78	-0.907227	-0.903179	-0.095046
15	1.305790	-1.083094	0.160291
7	1.992026	-0.111907	1.346984
7	2.410032	-0.655007	-0.997577
6	3.396149	0.148308	1.020847
1	4.042716	-0.655553	1.402022
1	3.709596	1.085510	1.487161
6	3.465467	0.223056	-0.504296
1	3.307742	1.246372	-0.860580
1	4.439504	-0.118085	-0.866208
6	1.674133	-0.368015	2.740816
1	2.217893	-1.231722	3.146240
1	0.602147	-0.549215	2.845211
1	1.926892	0.509957	3.339712
6	2.387041	-1.092490	-2.375387
1	2.614281	-0.256794	-3.042140
1	1.392187	-1.462308	-2.635099

1

15

7

7

6

1

1

1

6

1

1

3.115406

-0.818163

-0.924134

-2.163548

-3.116983

-2.102779

-2.068712

0.359403

1.003449

0.180488

0.608694

-1.890185

1.278351

2.192820

1.960608

1.764553

1.545295

1.195215

2.834114

2.846791

2.197609

3.775448

-2.558852

-0.370312

1.023982

-0.895092

-1.482036

-1.002160

-2.410283

-1.679489

1.301691

1.902529

1.847935

6	0.977311	3.109889	-0.063785
1	0.581864	4.036722	-0.502055
1	2.064718	3.191278	-0.002568
6	-1.702483	1.732303	2.162671
1	-1.149337	1.005954	2.769629
1	-2.625403	1.262278	1.820952
1	-1 962949	2 590036	2 786072
6	0.914851	2.028047	-2.312086
1	0.422352	2.879040	-2.799350
1	0 598889	1 109549	-2.807452
1	1 992572	2 129500	-2.449906
17	-3 316334	-1 074769	-0.045305
6	1 558545	-2 848272	0 566429
1	0.912631	-3 146395	1 395004
1	1 314544	-3 459840	-0.305100
1	2 605713	-3 004237	0.83563
1	2.003713	5.004257	0.05505
Comj	plex 4 a		
78	-0.000183	1.006584	-0.000026
15	-1.636047	-0.455458	0.500642
7	-2.869995	-0.629602	-0.649605
7	-1.324998	-2.103662	0.596253
6	-2.437376	-0.003424	2.072715
1	-2.922470	0.966428	1.979085
1	-1.680650	0.056506	2.858106
1	-3.172811	-0.772175	2.320545
6	-2.993891	-2.028594	-1.070994
1	-2.413960	-2.211104	-1.986384
1	-4.041393	-2.257869	-1.284276
6	-2.456867	-2.863048	0.080070
1	-3.228290	-3.016869	0.851356
1	-2.118930	-3.846482	-0.258070
6	-3.048025	0.349528	-1.711773
1	-2 248388	0 293647	-2 464137
1	-3 065430	1 357240	-1 300588
1	-4 005678	0 161802	-2 203364
6	-0.615507	-2 656091	1 728647
1	-1 279728	-2 856629	2 580838
1	0 161604	-1 964344	2 054437
1	-0 128474	-3 588737	1 434434
15	1 636330	-0 454803	-0.500658
7	2.870351	-0.628583	0.649603
7	1 325847	-2.103111	-0 596283
6	2 437466	-0.002639	-2 072802
1	2 922418	0.967279	-1 979202
1	1 680683	0.057174	-2.858147
1	3 173005	-0 771275	-2.320686
6	2 994602	-2.027518	1 071060
1	2 414658	-2 210158	1 986417
1	4 042152	-2 256494	1 284419
6	2 457902	-2.862151	-0.080010

1

1

3.229417

2.120219

-3.015772

-3.845670

-0.851241

0.258136

6	3.048236	0.350588	1.711766	1	-0.160732	-1.964372	-2.054588
1	2.248613	0.294607	2.464138	1	0.129856	-3.588617	-1.434458
1	3.065512	1.358296	1.300588	17	1.604538	2.798687	-0.473595
1	4.005916	0.162998	2.203358	17	-1.606024	2.797599	0.473750
6	0.616594	-2.655825	-1.728692				
1	1.280942	-2.856191	-2.580823				

References

- S. R. Foley, R. A. Stockland, Jr., H. Shen, R. F. Jordane, J. Am. Chem. Soc., 2003, 125, 4350-4361.
- 2 H. C. Clark, L. E. Manzer, J. Organomet. Chem., 1973, 59, 411-428.
- 3 C. R. Kistner, J. H. Hutchinson, J. R. Doyle, J. C. Storlie, *Inorganic Chemistry*, 1963, **2**, 1255-1261.
- 4 R. Klotzbücher, H. A. Brune, Manzer, J. Organomet. Chem., 1986, 299, 399-407.
- 5 J. Chatt, L. M. Vallarino, L.M. Vananzi, J. Chem. Soc., 1957, 2496-505.
- 6 F. Ramirez, A. V. Patwardhan, H. J. Kugler, and C. P. Smith, J. Am. Chem. Soc., 1967, 89, 6276-6282.
- 7 W. Becker, H. M. Schiebel, R. Schmutzler, Chem. Ber., 1992, 125, 793-800.