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1. PXRD Patterns and Solid-State Luminescent Spectra Studies of 1-11
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Figure S1. The emission spectra of the solid-state complexes: (a) H4L ligand; (b) 1; (c) 2; (inset) 
the image of corresponding compound under the irradiation of 365 nm UV light.

Figure S2. Powder X-ray diffraction patterns of CPs 1-11.

Figure S3. CIE chromaticity coordinates for 1, 2, and {[EuxTb1-x(HL)(H2O)3]·H2O}n 3–11 when 
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excited at 331 nm.
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Figure S4. Selected decay curves monitored at 618 nm (left side) and 547 nm (right side).

Figure S5. The energy transfer efficiency from Tb3+ to Eu3+ within CPs 3–11.
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2. Thermal and Water Stability

Figure S6. Thermogravimetric analyses (TGA) curve of CPs 1-2, 8.

Figure S7. The PXRD patterns of 1 after exposure to aqueous solution with various pH values 
from 1.0 to 9.0.
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Figure S8. Comparison of the dominated emission peaks (618 nm) of 1 after exposure to various 
aqueous solutions with pH values from 1.0 to 9.0 (ex = 321 nm).
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3. Sensing of Metal Cations

Figure S9. The luminescence intensity of CP 1 upon addition of different concentrations of 
Cr(NO3)3 aqueous solutions (ex = 321 nm), (inset) the dose-response graph at 618 nm revealing 
the Stern−Volmer quenching constant KSV was 0.0021 μM-1 for the luminescence quenching of 1 
by Cr3+ based on the Stern-Volmer equation (I0/I = 1+KSV[Q], I is the luminescence intensity at 6 
nm with Fe3+ ions in solution while I0 is in initial state. KSV is the Stern-Volmer quenching 
constant, and [Q] is the concentration of quencher Cr3+).

Figure S10. The luminescent spectra of 2 in the presence of Fe3+ and Cr3+ ions 10-3 M aqueous 
solutions (ex = 331 nm).
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Figure S11. Powder XRD of simulated from the single-crystal data of 1 (black), as-synthesized 1 
(red), 1 immersing in aqueous solution Fe3+-1 (green), Cr3+-1 (deep blue), 1-CrO4

2– (light blue) 
and 1-CO3

2– (purple).

Figure S12. UV-Vis adsorption spectra of Fe(NO3)3/Cr(NO3)3 aqueous solutions and the 
excitation spectrum of 1.
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Figure S13. The luminescence intensity of 1 after two runs of recycling. The intensity is measured 
at 618 nm under the excitation wavelength of 321 nm.
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4. Sensing of Anions

Figure S14. (a) The luminescence intensity of CP 1 upon addition of different concentrations of 
K2CO3 aqueous solutions, (inset) the dose-response graph at 618 nm revealing the Stern−Volmer 
quenching constant KSV was 0.0231 μM-1; (b) the luminescence intensity of 1 in different 
concentrations of K2CO3 aqueous solutions, (inset) the dose-response graph at 618 nm revealing 
the Stern−Volmer quenching constant KSV was 0.0038 μM-1 (ex = 321 nm).

Figure S15. The luminescence intensity of 2-Xn- in 10-3 M CrO4
2-/CO3

2- anions aqueous solutions 
(ex = 331 nm).
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Figure S16. UV-Vis adsorption spectra of K2CrO4 / K2CO3 aqueous solutions and the excitation 
spectrum of 1.
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5. Sensing of Organic Solvent Molecules

(a)

(b)
Figure S17. The luminescence emission spectra (a) and emission intensity of 5D4 → 7F5 (Tb3+, 
547 nm, blue column) to 5D0 → 7F2 (Eu3+, 618 nm, red column) (b) in 8 after adsorption of 
pyridine (Py), EtOH, 1,4-dioxane, glycol, acetone, acetonitrile, DMF, tetrahydrofuran (THF), and 
cyclohexane excited at 331 nm at room temperature.
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    (a)                                      (b)
Figure S18. Selected decay curves monitored at 547 nm (a) and 618 nm (b) for solid sample 8 
after adsorption of pyridine.

(a)

(b)                                     (c)
Figure S19. The photoluminescence spectra (a), emission intensity of 5D4 → 7F5 (Tb3+, 547 
nm, green column) and 5D0 → 7F2 (Eu3+, 618 nm, red column) (b) and emission intensity ratio of 
5D4 → 7F5 (Tb3+, 547 nm) to 5D0 → 7F2 (Eu3+, 618 nm) (c) in suspension-state 8 after 
adsorption of dicloromethane (CH2Cl2), chloroform (CHCl3) and tetrachloromethane (CCl4) 
molecules, respectively, excited at 331 nm in the suspensions at room temperature.
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(a)

(b)                                         (c)
Figure S20. The photoluminescence spectra (a), emission intensity of 5D4 → 7F5 (Tb3+, 547 
nm, green column) and 5D0 → 7F2 (Eu3+, 618 nm, red column) (b) and emission intensity ratio of 
5D4 → 7F5 (Tb3+, 547 nm) to 5D0 → 7F2 (Eu3+, 618 nm) (c) in suspension-state 8 after 
adsorption of benzene, toluene, chlorobenzene, and iodobenzene molecules, 
respectively, excited at 331 nm in the suspensions at room temperature.
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6. Tables

Table S1. Crystal data and structure refinement for 1.

Complex 1

Formula C18H15EuN3O12

fw 617.29

T/K 293(2)

λ (Mo K), Å 0.71073

Cryst syst Orthorhombic

Space group Fdd2

a (Å) 11.538(2)

b (Å) 41.059(8)

c (Å) 17.067(3)

β(°) 90

V (Å3) 8085(3)

Z 16

Dcalcd.(g·cm-3) 2.028

Reflections collected /unique 13239 / 3675

abs coeff/mm-1 3.179

F(000) 4848

θ (º) 2.19-25.49

GOF 1.082

R1(I>2sigma(I))a 0.0398

wR2(I>2sigma(I))b 0.0881

aR1 = Σ‖Fo| − |Fc‖/Σ|Fo| and bwR2 = {Σ[w(Fo
2 − Fc

2)2]/Σ[w(Fo
2)2]}1/2.
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Table S2. The ICP analysis results of mixed EuxTb1-x-CPs 3-11.

Mixed EuxTb1-x-CPs Feed molar ratio
（Tb:Eu）

Measured
（Tb:Eu）

3 1:9 1.3:8.7

4 2:8 2.7:7.3

5 3:7 3.3:6.7

6 4:6 4.1:5.9

7 6:4 6.2:3.8

8 7:3 7:3

9 8:2 8:2

10 9:1 9.1:0.9

11 9.5:0.5 9.4:0.6

Table S3. The 5D4 of Tb3+ and 5D0 of Eu3+ lifetimes for CPs 1-11. The decay curves are monitored 
at 547 nm and 618 nm and excited at 331 nm.

CPs 5D4 of Tb3+ /s 5D0 of Eu3+ /s

1 / 296.1

2 633.1 /

3 9.098 347

4 12.63 363.8

5 18.11 339.8

6 67.38 309.7

7 63.07 379.4

8 148.2 365

8a 182 360

9 106.6 408

10 242.4 392

11 409 450

8a : CP 8 solid after adsorption of pyridine.
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Table S4. The ICP analysis results of Eu metal content of filtrate when CPs 1 immersed in a series 
of solutions with pH values ranging from 2 to 8.

pH Measured
（Eu : mg/L）

2 Non-detected

3 Non-detected

4 Non-detected

5 Non-detected

6 Non-detected

7 Non-detected

8 Non-detected


