Supporting Information

Mono-/Bimetallic Water-Stable Lanthanide Coordination Polymers as Luminescent Probe for Detecting Cations, Anions and Organic Solvent Molecules

Huarui Wang^{a,b}, Jianhua Qin^{a,b}, Chao Huang^a, Yanbing Han^a, Wenjuan Xu^a, Hongwei Hou^{a,*}

^a College of Chemistry and Molecular Engineering,

Zhengzhou University, Henan, 450001, P. R. China

^b College of Chemistry and Chemical Engineering

and Henan Key Laboratory of Function Oriented Porous Materials,

Luoyang Normal University, Henan, 471934, P. R. China

E-mail: houhongw@zzu.edu.cn; Fax: (86)371-67761744

Contents

1.	PXRD Patterns and Solid-State Luminescent Spectra Studies of 1-11		
2.	Thermal	and	Water
	Stability		
3.	Sensing of Metal Cations		
4.	Sensing of Anions		S12
5.	Sensing of Organic Solvent Molecules		S14

1. PXRD Patterns and Solid-State Luminescent Spectra Studies of 1-11

(b)

Figure S1. The emission spectra of the solid-state complexes: (a) H_4L ligand; (b) 1; (c) 2; (inset) the image of corresponding compound under the irradiation of 365 nm UV light.

Figure S2. Powder X-ray diffraction patterns of CPs 1-11.

Figure S3. CIE chromaticity coordinates for 1, 2, and ${[Eu_xTb_{1-x}(HL)(H_2O)_3] \cdot H_2O}_n$ 3–11 when

S4

CP 9

Figure S4. Selected decay curves monitored at 618 nm (left side) and 547 nm (right side).

Figure S5. The energy transfer efficiency from Tb^{3+} to Eu^{3+} within CPs 3–11.

2. Thermal and Water Stability

Figure S6. Thermogravimetric analyses (TGA) curve of CPs 1-2, 8.

Figure S7. The PXRD patterns of **1** after exposure to aqueous solution with various pH values from 1.0 to 9.0.

Figure S8. Comparison of the dominated emission peaks (618 nm) of **1** after exposure to various aqueous solutions with pH values from 1.0 to 9.0 ($\lambda_{ex} = 321$ nm).

3. Sensing of Metal Cations

Figure S9. The luminescence intensity of CP **1** upon addition of different concentrations of $Cr(NO_3)_3$ aqueous solutions ($\lambda_{ex} = 321$ nm), (inset) the dose-response graph at 618 nm revealing the Stern–Volmer quenching constant K_{SV} was 0.0021 μ M⁻¹ for the luminescence quenching of **1** by Cr^{3+} based on the Stern-Volmer equation ($I_0/I = 1+K_{SV}[Q]$, I is the luminescence intensity at 6 nm with Fe³⁺ ions in solution while I_0 is in initial state. K_{SV} is the Stern-Volmer quenching constant, and [Q] is the concentration of quencher Cr^{3+}).

Figure S10. The luminescent spectra of **2** in the presence of Fe³⁺ and Cr³⁺ ions 10⁻³ M aqueous solutions ($\lambda_{ex} = 331$ nm).

Figure S11. Powder XRD of simulated from the single-crystal data of 1 (black), as-synthesized 1 (red), 1 immersing in aqueous solution $Fe^{3+}-1$ (green), $Cr^{3+}-1$ (deep blue), $1-CrO_4^{2-}$ (light blue) and $1-CO_3^{2-}$ (purple).

Figure S12. UV-Vis adsorption spectra of $Fe(NO_3)_3/Cr(NO_3)_3$ aqueous solutions and the excitation spectrum of 1.

Figure S13. The luminescence intensity of **1** after two runs of recycling. The intensity is measured at 618 nm under the excitation wavelength of 321 nm.

4. Sensing of Anions

Figure S14. (a) The luminescence intensity of CP **1** upon addition of different concentrations of K₂CO₃ aqueous solutions, (inset) the dose-response graph at 618 nm revealing the Stern–Volmer quenching constant K_{SV} was 0.0231 μ M⁻¹; (b) the luminescence intensity of **1** in different concentrations of K₂CO₃ aqueous solutions, (inset) the dose-response graph at 618 nm revealing the Stern–Volmer quenching constant K_{SV} was 0.0038 μ M⁻¹ ($\lambda_{ex} = 321$ nm).

Figure S15. The luminescence intensity of **2**- X^{n-} in 10⁻³ M CrO₄²⁻/CO₃²⁻ anions aqueous solutions ($\lambda_{ex} = 331 \text{ nm}$).

Figure S16. UV-Vis adsorption spectra of K_2CrO_4 / K_2CO_3 aqueous solutions and the excitation spectrum of 1.

5. Sensing of Organic Solvent Molecules

Figure S17. The luminescence emission spectra (a) and emission intensity of ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ (Tb³⁺, 547 nm, blue column) to ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (Eu³⁺, 618 nm, red column) (b) in **8** after adsorption of pyridine (Py), EtOH, 1,4-dioxane, glycol, acetone, acetonitrile, DMF, tetrahydrofuran (THF), and cyclohexane excited at 331 nm at room temperature.

Figure S18. Selected decay curves monitored at 547 nm (a) and 618 nm (b) for solid sample 8 after adsorption of pyridine.

Figure S19. The photoluminescence spectra (a), emission intensity of ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ (Tb³⁺, 547 nm, green column) and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (Eu³⁺, 618 nm, red column) (b) and emission intensity ratio of ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ (Tb³⁺, 547 nm) to ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (Eu³⁺, 618 nm) (c) in suspension-state **8** after adsorption of dicloromethane (CH₂Cl₂), chloroform (CHCl₃) and tetrachloromethane (CCl₄) molecules, respectively, excited at 331 nm in the suspensions at room temperature.

Figure S20. The photoluminescence spectra (a), emission intensity of ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ (Tb³⁺, 547 nm, green column) and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (Eu³⁺, 618 nm, red column) (b) and emission intensity ratio of ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ (Tb³⁺, 547 nm) to ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (Eu³⁺, 618 nm) (c) in suspension-state **8** after adsorption of benzene, toluene, chlorobenzene, and iodobenzene molecules, respectively, excited at 331 nm in the suspensions at room temperature.

6. Tables

Complex	1
Formula	$C_{18}H_{15}EuN_{3}O_{12}$
fw	617.29
T/K	293(2)
λ (Mo K), Å	0.71073
Cryst syst	Orthorhombic
Space group	Fdd2
a (Å)	11.538(2)
b (Å)	41.059(8)
c (Å)	17.067(3)
β(°)	90
V (Å ³)	8085(3)
Ζ	16
$D_{\text{calcd.}}(\mathbf{g}\cdot\mathbf{cm}^{-3})$	2.028
Reflections collected /unique	13239 / 3675
abs coeff/mm ⁻¹	3.179
<i>F</i> (000)	4848
heta (°)	2.19-25.49
GOF	1.082
R_I (I>2sigma(I)) ^a	0.0398
$wR_2(I>2sigma(I))^b$	0.0881

 Table S1. Crystal data and structure refinement for 1.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| \Sigma ||F_{o}|$ and ${}^{b}wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]\}^{1/2}$.

Mixed Eu _x Tb _{1-x} -CPs	Feed molar ratio (Tb:Eu)	Measured (Tb:Eu)
3	1:9	1.3:8.7
4	2:8	2.7:7.3
5	3:7	3.3:6.7
6	4:6	4.1:5.9
7	6:4	6.2:3.8
8	7:3	7:3
9	8:2	8:2
10	9:1	9.1:0.9
11	9.5:0.5	9.4:0.6

Table S2. The ICP analysis results of mixed Eu_xTb_{1-x}-CPs **3-11**.

Table S3. The ${}^{5}D_{4}$ of Tb³⁺ and ${}^{5}D_{0}$ of Eu³⁺ lifetimes for CPs **1-11**. The decay curves are monitored at 547 nm and 618 nm and excited at 331 nm.

CPs	5D_4 of $Tb^{3+}/\mu s$	5D_0 of Eu $^{3+}/\mu s$
1	/	296.1
2	633.1	/
3	9.098	347
4	12.63	363.8
5	18.11	339.8
6	67.38	309.7
7	63.07	379.4
8	148.2	365
8 ^a	182	360
9	106.6	408
10	242.4	392
11	409	450

8^a : CP 8 solid after adsorption of pyridine.

рН	Measured (Eu:mg/L)
2	Non-detected
3	Non-detected
4	Non-detected
5	Non-detected
6	Non-detected
7	Non-detected
8	Non-detected

Table S4. The ICP analysis results of Eu metal content of filtrate when CPs **1** immersed in a series of solutions with pH values ranging from 2 to 8.