Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information for Dalton Transactions

This journal is © The Royal Society of Chemistry XXXX

Supporting Information for Manuscript:

Iron(III) Bis(pyrazol-1-yl)acetate Based Decanuclear Metallacycle: Synthesis, Structure, Magnetic Properties and DFT Calculations

Małgorzata J. Gajewska,^a Alina Bieńko,^b Radovan Herchel,^{c*} Matti Haukka,^d Maria Jerzykiewicz,^b Andrzej Ożarowski,^e Krzysztof Drabent,^b Chen-Hsiung Hung,^{a*}

^a Institute of Chemistry, Academia Sinica, Nankang, Taipei 105, Taiwan; E-mail: <u>chhung@gate.sinica.edu.tw</u>
^b Faculty of Chemistry, Wrocław University, F. Joliot-Curie 14; 50-383 Wrocław Poland
^c Regional Centre of Advanced Technologies and Materials & Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; E-mail: <u>radovan.herchel@upol.cz</u>
^c Department of Chemistry, FI-40014 University of Jyväskylä, Finland
^e Nafional High Magnefic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA

*To whom correspondence should be addressed:

Phone: 886-2-27898570; Fax: 886-2-27831237; E-mail: <u>chhung@chem.sinica.edu.tw</u>

Electronic Supplementary Information for Dalton Transactions

This journal is © The Royal Society of Chemistry XXXX

Figure S1 - The IR spectra of $[Fe_{10}(bdtbpza)_{10}(MeO)_{20}]$ (bottom) and bis(3,5-di-t-butylpyrazol-1-yl)acetate ligand (top).

Figure S2 – UV-vis spectra of $[Fe_{10}(bdtbpza)_{10}(MeO)_{20}]$ (1) at room temperature in DCM solvent with concentration 6.35 x 10⁻⁵ M

Figure S4 The space-filling representations of {Fe₁₀} wheel showing the interior cavity diameters; (a) whole molecule, (b) without H atoms; (C-grey, H-cream, O-red, N-blue, Fe green)

b)

Atom no.	Valence state	Most consistent	BVS	% Deviation from
	assumed	valence state		assumed valence state
Fe1	Fe1(2)		2.939	47
Fe1	Fe1(3)	*	3.144	5
Fe1	Fe1(6)		3.039	49
Fe1	Fe1(9)		3.053	66
Fe2	Fe2(2)		3.022	51
Fe2	Fe2(3)	*	3.233	8
Fe2	Fe2(6)		3.13	48
Fe2	Fe2(9)		3.162	65
Fe3	Fe3(2)		3.001	50
Fe3	Fe3(3)	*	3.211	7
Fe3	Fe3(6)		3.108	48
Fe3	Fe3(9)		3.136	65
Fe4	Fe4(2)		2.956	48
Fe4	Fe4(3)	*	3.162	5
Fe4	Fe4(6)		3.058	49
Fe4	Fe4(9)		3.077	66
Fe5	Fe5(2)		3.016	51
Fe5	Fe5(3)	*	3.227	8
Fe5	Fe5(6)		3.123	48
Fe5	Fe5(9)		3.154	65

Table S1 Selected Bond valence sums for Fe atoms in (1)

(Only bonds that have all of the valence states defined in a given model have their bond valence parameters reported)