Electronic Supporting Information

Novel cis-[(NHC)¹(NHC)²(L)Cl]platinum(ll) complexes – synthesis, structures, and anticancer activities

Tobias Rehm,^a Matthias Rothemund,^a Julienne K. Muenzner,^a Awal Noor,^b Rhett Kempe,^b and Rainer Schobert^a

^aOrganic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth.

E-mail: Rainer.Schobert@uni-bayreuth.de

^bLehrstuhl fuer Anorganische Chemie II (Catalyst Design), University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth.

Table of content:

General information	S1
Synthesis and characterization of imidazolium chlorides and complex 1b	S2
X-ray structural analysis data of complexes 5a, 5d, 5h and 8a (Table S1)	S3
NMR spectra of complexes 2b-c, 5a-h and 8a-b (Fig. S1-S36)	S4
References	S22

General information

All chemicals and reagents were purchased from Sigma Aldrich, Alfa Aesar or ABCR and were used without further purification. Melting points are uncorrected; NMR spectra were run on a 500 MHz spectrometer; chemical shifts are given in ppm (δ) and referenced relative to the internal solvent signal; ¹⁹⁵Pt NMR shifts are quoted relative to $\Xi(^{195}Pt) = 21.496784$ MHz, K₂PtCl₄ was used as external standard (δ ¹⁹⁵Pt = -1612.81); mass spectra: direct inlet, EI, 70 eV; X-Ray diffractometers: STOE-IPDS II and STOE-STADIVARI. *N*-methyl- and *N*-benzylimidazolium salts were prepared based on literature procedures¹⁻⁴ and complex **1b** was prepared analogously to **1a**⁵ as described herein.

Synthesis and characterization of imidazolium chlorides and complex 1b

General procedure:

Imidazole (1eq) and the respective benzyl chloride (2.1 eq) in acetonitrile (10 mL/mmol) were treated with K_2CO_3 (1.2 eq) and the resulting mixture was heated to 70 °C for 3-5 days. After filtration the solvent was evaporated in vacuo and the residue was washed several times with Et_2O .

Synthesis of 1,3-dibenzylimidazolium chloride:1

Imidazole (100 mg, 1.47 mmol), benzyl chloride (355 μ L) and K₂CO₃ (244 mg) in acetonitrile (15 mL) for 72 h gave 333 mg (80%) of a colorless oil. ¹H NMR (CDCl₃, 500 MHz): δ 5.43 (4 H, s), 7.17 - 7.24 (6 H, m), 7.33 - 7.42 (6 H, m), 10.85 (1 H, s).

Synthesis of 1,3-di(4-methoxybenzyl)imidazolium chloride:

Imidazole (100 mg, 1.47 mmol), 4-methoxybenzyl chloride (417 μ L) and K₂CO₃ (244 mg) in acetonitrile (15 mL) for 72 h gave 500 mg (99%) of a pale yellow gum. ¹H NMR (CDCl₃, 500 MHz): δ 3.74 (6 H, s), 5.43 (4 H, s), 6.84 (4 H, d, J=8.9 Hz), 7.22 (2 H, s), 7.39 (4 H, d, J=8.9 Hz), 10.98 (1 H, s).

Synthesis of 1,3-di(4-fluorobenzyl)imidazolium chloride:2

Imidazole (50 mg, 0.735 mmol), 4-fluorobenzyl chloride (182 μ L) and K₂CO₃ (122 mg) in acetonitrile (7.5 mL) for 72 h gave 165 mg (70%) of a yellow gum. ¹H NMR (CDCl₃, 500 MHz): δ 5.51 (4 H, s), 7.00 (2 H, tt, *J*=8.7, 2.6 Hz), 7.34 (2 H, s), 7.49 (1 H, dd, *J*=8.7, 5.0 Hz), 11.02 (1 H, br. s.).

Synthesis of 1,3-di(3,5-dimethoxybenzyl)imidazolium chloride:³

Imidazole (50 mg, 0.735 mmol), 3,5-dimethoxybenzyl chloride (288 mg) and K_2CO_3 (122 mg) in acetonitrile (7.5 mL) for 5 d gave 205 mg (69%) of an orange gum. ¹H NMR (CDCl₃, 500 MHz): δ 3.73 (12 H, s), 5.39 (4 H, s), 6.39 (2 H, t, J=2.3 Hz), 6.56 (4 H, d, J=2.3 Hz), 7.18 (2 H, s), 11.20 (1 H, s).

Synthesis of 1-benzyl-3-methylimidazolium chloride:⁴

Methylimidazole (60 mg, 0.735 mmol) and benzyl chloride (100 μ L, 0.882 mmol) in acetonitrile (5 mL) were heated to 70 °C for 72 h. After evaporation of the solvent in vacuo the residue was washed several times with Et₂O to yield 132 mg (86%) of a pale yellow gum. ¹H NMR (CDCl₃, 500 MHz): δ 3.98 (3 H, s), 5.54 (2 H, s), 7.29 - 7.34 (3 H, m), 7.37 (1 H, t, *J*=1.7 Hz), 7.41 - 7.46 (2 H, m), 7.51 (1 H, t, *J*=1.7 Hz), 10.51 (1 H, s).

Synthesis of trans-[dichlorido-bis(1,3-di(4-methoxybenzyl)imidazol-2-ylidene)]platinum(II) (1b):5

A solution of 1,3-di(4-methoxybenzyl)imidazolium chloride (60 mg, 0.154 mmol) in CH_2Cl_2 was treated with silver(I) oxide (18 mg, 77 µmol), and the resulting mixture was stirred at room temperature for 24 h. Then K₂PtCl₄ (32 mg, 77 µmol) was added and the reaction was allowed to stir for additional 24 h. The suspension was filtered, the filtrate was concentrated in vacuo, and the residue was recrystallized from CH_2Cl_2 /hexane. Yield 38 mg (56%) white crystals of m.p. 194 °C (decomp.). ¹H NMR (CDCl₃, 500 MHz): δ 3.76 (12 H, s), 5.74 (8 H, s), 6.63 (4 H, s), 6.83 (8 H, d, J=8.5 Hz), 7.43 (8 H, d, J=8.5 Hz); ¹³C NMR (CDCl₃, 126 MHz): δ 53.0, 55.2, 114.0, 120.1, 128.6, 129.9, 159.3, 167.2 (NHC). EI-MS: *m/z* 883 (M⁺, 5%), 847 (12, -Cl), 810 (35, -2x Cl), 501 (17), 308 (23), 241 (28), 121 (100).

	5a (CCDC1481381)	5d (CCDC1481378)	5h (CCDC1481379)	8a (CCDC1481380)
Empirical formula	$C_{34}H_{32}Cl_2N_4Pt$	$C_{34}H_{28}CI_2F_2N_4Pt$	$C_{39}H_{42}Cl_4N_4O_4Pt$	$C_{53}H_{53}CI_4N_4O_2PPt$
Formula weight	762.62	796.59	967.65	1145.85
Temperature	133 K	133 K	133 K	133 K
Wavelength	0.71069 Å	0.71069 Å	0.71069 Å	0.71069 Å
Crystal system	monoclinic	monoclinic	monoclinic	triclinic
Space group	P21/c	C2/c	P21/c	P-1
Unit cell dimensions	a = 7.5380(3) Å	a = 15.6790(6) Å	a = 11.1330(4) Å	a = 11.4460(4) Å
	b = 33.6480(12) Å	b = 14.1220(6) Å	b = 29.7780(14) Å	b = 11.7520(4) Å
	c = 12.1810(5) Å	c = 15.1390(8) Å	c = 12.1160(4) Å	c = 19.7120(8) Å
	$\alpha = \gamma = 90^{\circ}$	$\alpha = \gamma = 90^{\circ}$	$\alpha = \gamma = 90^{\circ}$	α = 75.959(3)°
	β = 95.951(3)°	β = 113.895(5)°	$\beta = 101.539(3)^{\circ}$	β = 74.604 (3)°
				γ = 73.708(3)°
Volume	3072.9(2) ų	3064.8(3) ų	3935.5(3) ų	2412.88(16) Å ³
Z	4	4	4	2
Density (calcd)	1.648 Mg/m ³	1.726 Mg/m ³	1.633 Mg/m ³	1.577 Mg/m ³
Absorption coefficient	4.77 mm ⁻¹	4.80 mm⁻¹	3.88 mm⁻¹	3.21 mm⁻¹
F(000)	1504	1560	1928	1152
Crystal size / mm	$0.16 \times 0.11 \times 0.08$	$0.21\times0.14\times0.08$	$0.15\times0.12\times0.08$	$0.25\times0.18\times0.11$
Theta range (data col.)	3.6–54.5°	4.1–53.1°	4.4–55.3°	3.7–53.2°
Index ranges	<i>—</i> 9 ≤ h ≤ 9	–19 ≤ h ≤ 19	$-7 \le h \le 13$	$-14 \le h \le 14$
Index ranges	$-42 \le k \le 0$	$-17 \le k \le 17$	–36 ≤ k ≤ 36	$-14 \le k \le 14$
Index ranges	–15 ≤ l ≤ 15	$-18 \le \le 18$	$-14 \le \le 14$	$-24 \le \le 24$
Reflections collected	12924	19249	23066	34049
Independent reflexes	6540 [R _{int} =0.040]	3070 [R _{int} =0.073]	7701 [R _{int} =0.069]	9655 [Rint=0.099]
Completeness to qmax	99.4%	99.4%	99.7%	98.9%
Absorption correction	numerical	numerical	numerical	numerical
Max / min transmission	0.740 / 0.454	0.506 / 0.248	0.848 / 0.652	0.712 / 0.424
Refinement method	Full–matrix least– squares on F ²			
Data / restraints / param	6540 / 0 / 370	3070 / 18 / 204	7701 / 18 / 475	9655 / 4 / 602
Goodness–of–fit on F ²	0.766	0.984	0.934	0.994
Final R indices	$R_1 = 0.0276$	$R_1 = 0.0267$	$R_1 = 0.0575$	$R_1 = 0.0582$
[l>2ơ(l)]	$wR_2 = 0.0601$	$wR_2 = 0.0639$	$wR_2 = 0.1494$	$wR_2 = 0.1538$
R indices	$R_1 = 0.0471$	$R_1 = 0.0350$	$R_1 = 0.0931$	$R_1 = 0.0794$
(all data)	$wR_2 = 0.0579$	$wR_2 = 0.0625$	$wR_2 = 0.1342$	$wR_2 = 0.1436$
Largest diff. peak / hole	1.40/– 1.21 eÅ ⁻³	2.30/– 1.11 eÅ ⁻³	1.89/– 2.14 eÅ ⁻³	3.43/– 1.47 eÅ ⁻³

Table S 1: X-ray structural data of platinum carbene complexes 5a,d,h and 8a

Fig. S 1: 1 H-NMR spectrum (500 MHz, CDCl₃) of complex **2b**.

Fig. S 2: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 2b.

Fig. S 4: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 2c.

Fig. S5: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 5a.

Fig. S 6: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 5a.

Fig. S8: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 5b.

Fig. S 10: ¹⁹⁵Pt-NMR spectrum (CDCl₃) of complex 5b.

Fig. S 12: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 5c.

Fig. S 13: $^{\rm 195}\text{Pt-NMR}$ spectrum (CDCl3) of complex 5c.

Fig. S14: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 5d.

Fig. S 16: ¹⁹⁵Pt-NMR spectrum (CDCl₃) of complex 5d.

Fig. S17: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 5e.

Fig. S 18: ¹³C-ATP-NMR spectrum (126 MHz, CDCl₃) of complex 5e.

Fig. S 19: ¹⁹⁵Pt-NMR spectrum (CDCl₃) of complex 5e.

Fig. S20: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 5f.

Fig. S 22: ¹⁹⁵Pt-NMR spectrum (CDCl₃) of complex 5f.

Fig. S 24: ¹³C-ATP-NMR spectrum (126 MHz, CDCl₃) of complex 5g.

Fig. S 25: ¹⁹⁵Pt-NMR spectrum (CDCl₃) of complex 5g.

Fig. S26: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 5h.

Fig. S 28: ¹⁹⁵Pt-NMR spectrum (CDCl₃) of complex 5h.

Fig. S 30: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 8a.

Fig. S 32: ³¹P-NMR spectrum (202 MHz, CDCl₃) of complex 8a.

Fig. S 33: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 8b.

Fig. S 34: ¹³C-ATP-NMR spectrum (126 MHz, CDCl₃) of complex 8b.

Fig. S 36: ³¹P-NMR spectrum (202 MHz, CDCl₃) of complex 8b.

References

- ¹ M. Bouhrara, E. Jeanneau, L. Veyre, C. Coperet, C. Thieuleux, *Dalton Trans.*, 2011, **40**, 2995.
- ² L. Naya, D. Vazquez-García, A. Fernandez, M. Lopez-Torres, I. Marcos, O. Lenis, M. Pereira, J. Vila, J. Fernandez, *J. Organomet. Chem.*, 2014, **772-773**, 192–201.
- ³ K. Fujita, K. Inoue, J. Sato, T. Tsuchimoto and H. Yasuda, *Tetrahedron*, 2016, **72**, 1205–1212.
- ⁴ H. Shirota, H. Matsuzaki, S. Ramati and J. Wishart, *J. Phys. Chem. B*, 2015, **119**, 9173–9187.
- ⁵ J. Muenzner, T. Rehm, B. Biersack, A. Casini, I. de Graaf, P. Worawutputtapong, A. Noor, R. Kempe, V. Brabec, J. Kasparkova and R. Schobert, *J. Med. Chem.*, 2015, **58**, 6283–6292.