## **Supporting Information**

# Synthesis of $Bi_2Te_3$ and $(Bi_xSb_{1-x})_2Te_3$ Nanoparticles using the novel IL $[C_4mim]_3[Bi_3I_{12}]$ .

Manuel Loor, Georg Bendt, Ulrich Hagemann, Christoph Wölper, Wilfried Assenmacher, Stephan Schulz\*

Content

Fig. S1-S3.  ${}^{1}$ H and  ${}^{13}$ C NMR spectra; IR spectra of [C<sub>4</sub>mim]<sub>3</sub>[Bi<sub>3</sub>I<sub>12</sub>] **1**.

Fig. S4. NMR spectroscopic study of the byproducts of the reaction of  $(Et_3Si)_2Te$  and  $[C_4mim]_3[Bi_3I_{12}]$ .

Fig. S5-S7.  $^1\!H$  and  $^{13}\!C$  NMR spectra; IR spectra of [C4mim]I.

Fig. S8. Color change upon heating and cooling of  $[C_4mim][Bi_3I_{12}]$  1.

Fig. S9. Temperature-dependent DSC study of 1.

Table S1: Hydrogen bonds [Å] and °] for 1.

Table S2: Inter-halide interactions [Å and °] for 1.

**Table S3**: EDX results from STEM spot analyses on single crystals.

Fig. S1. <sup>1</sup>H-NMR spectrum of **1** in DMSO-d6.



Fig. S2. <sup>13</sup>C-NMR spectrum of **1** in DMSO-d6.



#### Fig. S3. IR absorption spectrum of **1**.



Fig. S4a. <sup>1</sup>H-NMR spectroscopic study in CDCl<sub>3</sub> of the byproducts of the reaction of  $(Et_3Si)_2Te$  and  $[C_4mim]_3[Bi_3I_{12}]$ ; peaks marked with \* correspond to  $Et_3SiI$  and those with # to  $Si_2Et_6$ .



Fig. S4b. <sup>13</sup>C-NMR spectroscopic study in CDCl<sub>3</sub> of the byproducts of the reaction of  $(Et_3Si)_2Te$  and  $[C_4mim]_3[Bi_3I_{12}]$ ; peaks marked with \* correspond to  $Et_3Sil$  and those with # to  $Si_2Et_6$ .



Fig. S4c. <sup>29</sup>Si-NMR spectroscopic study in CDCl<sub>3</sub> of the byproducts of the reaction of  $(Et_3Si)_2Te$  and  $[C_4mim]_3[Bi_3I_{12}]$ ; peaks marked with \* correspond to  $Et_3Sil$  and those with # to  $Si_2Et_6$ .



Fig. S5. <sup>1</sup>H-NMR spectrum of [C<sub>4</sub>mim][I] in DMSO-d6.



Fig. S6.  $^{13}$ C-NMR spectrum of [C<sub>4</sub>mim][I] in DMSO-d6.



f1 (ppm) 



Fig. S8. Thermochromic behavior of 1.







| D-H···A              | d(D-H) | d(H···A) | d(D…A)    | ∠(DHA) |
|----------------------|--------|----------|-----------|--------|
| C(11)-H(11C)…I(13)   | 0.98   | 3.07     | 3.813(13) | 133.7  |
| C(13)-H(13)…I(23)#3  | 0.95   | 3.18     | 3.851(12) | 129.3  |
| C(13)-H(13)…I(24)    | 0.95   | 3.21     | 4.014(14) | 143.5  |
| C(16)-H(16A)…I(14)   | 0.99   | 3.26     | 4.089(12) | 142.9  |
| C(16)-H(16A)…I(16)   | 0.99   | 3.27     | 3.932(12) | 126.1  |
| C(21)-H(21A)…I(26)#3 | 0.98   | 3.27     | 4.035(13) | 135.9  |
| C(22)-H(22)…I(26)#3  | 0.95   | 3.09     | 3.929(12) | 148.0  |
| C(23)-H(23)…I(14)#4  | 0.95   | 3.13     | 3.981(13) | 150.3  |
| C(26)-H(26B)…I(24)#4 | 0.99   | 3.32     | 4.235(11) | 153.7  |
| C(31)-H(31A)…I(26)   | 0.98   | 3.28     | 4.168(15) | 152.4  |
| C(31)-H(31B)…I(16)#5 | 0.98   | 3.28     | 3.780(12) | 113.3  |
| C(31)-H(31C)…I(14)#4 | 0.98   | 3.31     | 4.167(13) | 147.4  |
| C(32)-H(32)…I(21)    | 0.95   | 3.23     | 3.928(13) | 131.8  |
| C(32)-H(32)…I(26)    | 0.95   | 3.11     | 3.860(12) | 137.5  |
| C(34)-H(34)…I(15)#6  | 0.95   | 3.29     | 4.128(13) | 148.1  |
| C(36)-H(36B)…I(16)#6 | 0.99   | 3.31     | 4.230(15) | 155.4  |

 Table S1: Hydrogen bonds [Å] and °] for 1.

#3 x,-y+3/2,z+1/2 #4 -x+1,y-1/2,-z+1/2 #5 x+1,y,z #6 x+1,-y+3/2,z-1/2

 Table S2: Inter-halide interactions [Å and °] for 1.

| Bi–I…I–Bi             | d(I…I)     | ∠(Bi–I…I) | ∠(I…I–Bi) |
|-----------------------|------------|-----------|-----------|
| Bi(12)–I(16)…I(11)#7– | 3.8510(10) | 152.58(2) | 150.33(3) |
| Bi(11)#7              |            |           |           |
| Bi(12)–I(16)…I(11)#7– |            |           | 97.76(2)  |
| Bi(12)#7              |            |           |           |
| Bi(22)–I(24)…I(23)#3– | 3.8778(10) | 175.95(3) | 144.51(3) |
| Bi(22)#3              |            |           |           |
| Bi(22)–I(24)…I(23)#3– |            |           | 137.01(2) |
| Bi(21)#3              |            |           |           |

#3 x, -y+3/2, z+1/2 #7 -x, y-1/2, -z+1/2

Table S3: EDX results from STEM spot analyses on single crystals

#### a) $(Bi_xSb_{1-x})_2Te_3$ with x = 0.25

Philips/FEI CM300 UT FEG; 300 keV acc. Voltage; Thermo Noran NSS Ge-Detector

| Atom%     | Sb-L  | Te-L  | Bi-L  | esd       | Sb-L | Те   | ?-L |
|-----------|-------|-------|-------|-----------|------|------|-----|
| 10(1)_pt1 | 26.11 | 60.68 | 13.22 | 10(1)_pt1 | 1.6  | 1.75 | 5   |
| 10(1)_pt2 | 26.23 | 65.88 | 7.89  | 10(1)_pt2 | 3.47 | 7.14 |     |
| 10(1)_pt3 | 24.6  | 62.19 | 13.21 | 10(1)_pt3 | 2.22 | 2.39 |     |
| 10(2)_pt1 | 27.39 | 63.65 | 8.96  | 10(2)_pt1 | 2.53 | 5.3  |     |
| 10(2)_pt2 | 25.16 | 60.9  | 13.94 | 10(2)_pt2 | 2.29 | 2.49 |     |
| 10(2)_pt3 | 24.31 | 63.32 | 12.37 | 10(2)_pt3 | 2.16 | 4.52 |     |
| 10(2)_pt4 | 28.05 | 59.06 | 12.89 | 10(2)_pt4 | 1.85 | 1.98 |     |
| 10(2)_pt5 | 24.17 | 61.08 | 14.75 | 10(2)_pt5 | 1.33 | 1.48 |     |
| 10(2)_pt6 | 29.04 | 59.3  | 11.67 | 10(2)_pt6 | 1.97 | 2.14 |     |
| 10(2)_pt7 | 23.24 | 61.47 | 15.29 | 10(2)_pt7 | 1.56 | 3.52 |     |
| 10(2)_pt8 | 24.21 | 59.62 | 16.17 | 10(2)_pt8 | 2.25 | 2.23 |     |
| 10(3)_pt1 | 30.57 | 55.29 | 14.14 | 10(3)_pt1 | 4.59 | 5.63 |     |
| 10(3)_pt2 | 23.55 | 66.51 | 9.94  | 10(3)_pt2 | 3.84 | 7.95 |     |
| 10(3)_pt4 | 30.16 | 61.56 | 8.29  | 10(3)_pt4 | 2.78 | 3.02 |     |
| 10(3)_pt5 | 28.27 | 61.6  | 10.14 | 10(3)_pt5 | 1.82 | 2.2  |     |
| 10(3)_pt6 | 28.18 | 58.59 | 13.23 | 10(3)_pt6 | 2.39 | 2.56 |     |
| 10(3)_pt7 | 26.43 | 59.15 | 14.41 | 10(3)_pt7 | 1.44 | 1.57 |     |
| 10(3)_pt8 | 30.97 | 56.21 | 12.82 | 10(3)_pt8 | 2.72 | 1.68 |     |
| Average:  | 26.70 | 60.89 | 12.41 |           | 2.38 | 3.31 |     |

#### b) $(Bi_xSb_{1-x})_2Te_3$ with x = 0.5

Philips/FEI CM300 UT FEG; 300 keV acc. Voltage; Thermo Noran NSS Ge-Detector (yellow cell color) Philips/FEI CM30 T Lab<sub>6</sub>; 300 keV acc. Voltage; Thermo Noran NSS Si(Li)-Detector (white cell color)

| Atom%     | Sb-L  | Te-L  | Bi-L  | esd       | Sb-L | Te-L | Bi-L |
|-----------|-------|-------|-------|-----------|------|------|------|
| 01(1)_pt1 | 16.73 | 56.46 | 26.81 | 01(1)_pt1 | 2    | 4.27 | 1.46 |
| 01(1)_pt2 | 15.43 | 62.01 | 22.56 | 01(1)_pt2 | 0.92 | 1.02 | 0.84 |
| 01(1)_pt3 | 15.25 | 61.13 | 23.63 | 01(1)_pt3 | 0.89 | 2.17 | 0.66 |
| 01(1)_pt4 | 14.01 | 61.97 | 24.02 | 01(1)_pt4 | 2.28 | 2.27 | 2.23 |
| 01(2)_pt1 | 16.03 | 58.31 | 25.66 | 01(2)_pt1 | 1.91 | 4    | 1.33 |
| 01(2)_pt2 | 16.07 | 60.58 | 23.34 | 01(2)_pt2 | 1.33 | 1.31 | 1.01 |
| 01(2)_pt3 | 16.6  | 59.8  | 23.6  | 01(2)_pt3 | 1.57 | 1.57 | 1.17 |
| 01(2)_pt4 | 16.87 | 60.65 | 22.48 | 01(2)_pt4 | 1.83 | 1.82 | 1.28 |
| 01(2)_pt6 | 16.81 | 60.2  | 22.99 | 01(2)_pt6 | 1.82 | 1.8  | 1.31 |
| 01(3)_pt1 | 17.12 | 59.27 | 23.61 | 01(3)_pt1 | 1.14 | 1.15 | 0.88 |
| 01(3)_pt2 | 16.28 | 58.65 | 25.07 | 01(3)_pt2 | 1.61 | 0.97 | 0.63 |
| 01(3)_pt3 | 16.39 | 60.57 | 23.04 | 01(3)_pt3 | 1.38 | 1.71 | 0.63 |
| 01(3)_pt4 | 17    | 59.51 | 23.5  | 01(3)_pt4 | 1.3  | 1.61 | 0.59 |

| 01(3)_pt5 | 15.53 | 57.48 | 26.98 | 01(3)_pt5 | 1.24 | 2.66 | 1.18 |
|-----------|-------|-------|-------|-----------|------|------|------|
| 01(3)_pt6 | 16.34 | 59.6  | 24.06 | 01(3)_pt6 | 0.61 | 0.67 | 0.47 |
| 1(1)_pt1  | 14.78 | 61.97 | 23.25 | 1(1)_pt1  | 1.59 | 3.67 | 1.41 |
| 1(1)_pt2  | 15.76 | 59.92 | 24.32 | 1(1)_pt2  | 2.72 | 3.23 | 1.24 |
| 1(1)_pt3  | 14.05 | 63.11 | 22.84 | 1(1)_pt3  | 2.57 | 5.54 | 1.55 |
| 1(1)_pt4  | 34.87 | 47.39 | 17.75 | 1(1)_pt4  | 2.43 | 2.83 | 0.94 |
| 1(1)_pt5  | 16.75 | 61.4  | 21.85 | 1(1)_pt5  | 1.3  | 2.77 | 1.07 |
| 1(2)_pt1  | 20.08 | 62.13 | 17.8  | 1(2)_pt1  | 2.01 | 4.29 | 1.11 |
| 1(2)_pt3  | 18.5  | 58.65 | 22.86 | 1(2)_pt3  | 2.47 | 2.93 | 1.08 |
| 1(2)_pt4  | 16.18 | 64.99 | 18.82 | 1(2)_pt4  | 1.97 | 2.07 | 1.14 |
| 1(2)_pt5  | 17.71 | 60.25 | 22.03 | 1(2)_pt5  | 2.64 | 3.16 | 1.18 |
| 1(3)_pt1  | 14.55 | 63.74 | 21.71 | 1(3)_pt1  | 2.83 | 5.97 | 1.74 |
| 1(3)_pt2  | 14.34 | 64.87 | 20.79 | 1(3)_pt2  | 1.73 | 3.63 | 1.04 |
| Average:  | 16.92 | 60.18 | 22.90 |           | 1.77 | 2.66 | 1.12 |

### c) $(Bi_xSb_{1-x})_2Te_3$ with x = 0.75

Philips/FEI CM300 UT FEG; 300 keV acc. Voltage; Thermo Noran NSS Ge-Detector

| Atom%     | Sb-L  | Te-L  | Bi-L  |   | esd       | Sb-L | Te-L | Bi-L |
|-----------|-------|-------|-------|---|-----------|------|------|------|
| 11(1)_pt1 | 6.63  | 57.99 | 35.37 |   | 11(1)_pt1 | 1.34 | 2.92 | 1.48 |
| 11(1)_pt2 | 4.61  | 59.22 | 36.17 |   | 11(1)_pt2 | 1.35 | 2.92 | 1.47 |
| 11(1)_pt3 | 8.43  | 59.81 | 31.76 |   | 11(1)_pt3 | 1.22 | 2.63 | 1.26 |
| 11(1)_pt4 | 8.93  | 59.8  | 31.27 |   | 11(1)_pt4 | 2.6  | 2.66 | 2.74 |
| 11(3)_pt1 | 9.31  | 62.02 | 28.68 |   | 11(3)_pt1 | 2.28 | 4.88 | 2.3  |
| 11(3)_pt2 | 6.97  | 59.86 | 33.17 |   | 11(3)_pt2 | 1.57 | 3.4  | 1.64 |
| 11(3)_pt3 | 6.08  | 61.08 | 32.84 |   | 11(3)_pt3 | 1.46 | 3.18 | 1.62 |
| 11(4)_pt2 | 10.44 | 56.9  | 32.66 |   | 11(4)_pt2 | 1.47 | 1.56 | 1.62 |
| 11(4)_pt3 | 5.9   | 61.37 | 32.73 |   | 11(4)_pt3 | 1.89 | 4.03 | 2.01 |
| Average:  | 7.48  | 59.78 | 32.74 | - |           | 1.69 | 3.13 | 1.79 |