SUPPORTING INFORMATION

Divalent and Trivalent Gas-Phase Coordination Complexes of Californium: Evaluating the Stability of Cf(II)

Phuong D. Dau, David K. Shuh, Manuel Sturzbecher-Hoehne, Rebecca J. Abergel, and John K. Gibson

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA

Figure S1. ESI mass spectra of the Cf^{3+}/Cm^{3+} (top) and Sm^{3+} (bottom) solutions (L = CH_3SO_2). As discussed in the experimental section, sodium clusters were particularly abundant for the Cf^{3+}/Cm^{3+} solution due to the necessity to add a large excess of NaCH₃SO₂.

Figure S2. CID mass spectra of m/z values corresponding to the three ML_4^- (M = Cf, Sm, Cm; L = CH₃SO₂). The CID products reveal particularly substantial isobaric contamination at the mass corresponding to CmL₄⁻. The identity of this as a sodium cluster is confirmed by loss of NaL upon CID. In Figure 2 the spectra do not extend down to the m/z values of the impurity products, to emphasize there the chemistry of interest. The intensity of the truncated Na₄L₃³⁵Cl(CH₃SO₂)⁻ peak in the bottom spectrum is ~500.