Supporting Information

Inhibitory Effects of Substituted Different Transition Metal-Based Krebs-type Sandwich Structure on Human Hepatocellular Carcinoma cells

L. Wang,^{b*} K. Yu,^a J. Zhu,^c B. B. Zhou,^{a*} J. R. Liu,^{d*} and G. Y. Yang^{e*}

^aKey Laboratory of Synthesis of Functional Materials and Green Catalysis Colleges of Heilongjiang Province, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, the People's Republic of China, E-mail: zhou_bai_bin@163.com.

^bDepartment of Biochemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, the People's Republic of China, E-mail: hitwanglu@hit.edu.cn.

^cThe First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, the People's Republic of China.

^dBoston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, Ma 02115-5737, E-mail: Jia-Ren.Liu@childrens.harvard.edu.

^eMOE Key Laboratory of Cluster Science, School of Chemistry, Beijing Institute of Technology, Beijing 100081, China, E-mail: ygy@bit.edu.cn

Compound	3	4	
Empirical formula	$C_6H_{82}Bi_2N_4Na_4Ni_3O_{105.5}W_{19}$	$C_6H_{74}Bi_2N_4Na_4O_{101}W_{20}Zn_2$	
Formula weight	6077.96	6136.20	
Temperature,K	293(2)	293(2)	
Crystal system	triclinic	triclinic	
Space group	P -1	P -1	
a, Å	12.4706(5)	12.549(5)	
b, Å	13.6489(5)	13.769(5)	
c, Å	16.9382(6)	17.098(6)	
α,deg	69.435(3)	68.787(5)	
β,deg	82.923(3)	83.447(5)	
Г,deg	64.629(4)	65.422(4)	
Volume, Å ³	2437.71(18)	2502.3(16)	
Z	1	1	
D _{calcd} (g cm ⁻³)	4.141	4.072	
μ(Mo Kα),mm ⁻¹	26.617	26.986	
F(000)	2690	2696	
Reflections collected/unique (R _{int})	30014 / 9943	15227 / 11678	
GOF on F ²	1.060	1.095	
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0389, wR2 = 0.0927	R1 = 0.0783, wR2 = 0.1898	
R (all data)	R1 = 0.0497, wR2 = 0.1095	R1 = 0.1491, wR2 = 0.2304	

Table S1 Crystal data and refinement parameters for Compounds 3 and 4.

 $(* R_1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|, wR_2 = [\Sigma(w(F_o^2 - F_c^2)^2)/\Sigma(wF_o^2)^2]^{1/2}).$

W(1)-O(26)	1.752(10)	W(1)-O(32)	1.807(10)	W(1)-O(17)	2.072(9)
W(1)-O(9)	1.797(10)	W(1)-O(31)	2.070(9)	W(1)-O(13)	2.229(9)
W(2)-O(4)	1.723(10)	W(2)-O(33)	1.884(11)	W(2)-O(34)	1.937(10)
W(2)-O(16)	1.884(10)	W(2)-O(15)	1.902(10)	W(2)-O(10)	2.288(9)
W(3)-O(19)	1.720(9)	W(3)-O(31)	1.880(9)	W(3)-O(7)	1.984(10)
W(3)-O(20)	1.887(10)	W(3)-O(16)	1.980(10)	W(3)-O(13)	2.304(9)
W(4)-O(3)	1.728(10)	W(4)-O(34)	1.946(10)	W(4)-O(20)	1.948(10)
W(4)-O(11)	1.843(9)	W(4)-O(2)	1.898(10)	W(4)-O(10)	2.239(9)
W(5)-O(24)	1.743(11)	W(5)-O(27)	1.931(9)	W(5)-O(25)	2.033(10)
W(5)-O(5)	1.775(10)	W(5)-O(21)	1.964(10)	W(5)-O(12)	2.199(10)
W(6)-O(23)	1.735(11)	W(6)-O(27)	1.917(10)	W(6)-O(33)	2.055(10)
W(6)-O(22)	1.776(10)	W(6)-O(2)	1.960(10)	W(6)-O(10)	2.206(10)
W(7)-O(6)	1.704(10)	W(7)-O(29)	1.900(10)	W(7)-O(30)	1.953(9)
W(7)-O(25)	1.890(11)	W(7)-O(15)	1.926(10)	W(7)-O(12)	2.277(9)
W(8)-O(18)	1.718(10)	W(8)-O(7)	1.904(9)	W(8)-O(29)	1.946(10)
W(8)-O(17)	1.877(9)	W(8)-O(14)	1.916(10)	W(8)-O(13)	2.297(9)
W(9)-O(8)	1.726(10)	W(9)-O(14)	1.932(10)	W(9)-O(30)	1.942(9)
W(9)-O(28)	1.857(10)	W(9)-O(21)	1.936(11)	W(9)-O(12)	2.246(9)
W(10)-O(1)	1.869(12)	W(10)-O(28)	1.979(10)	W(10)-O(9)	2.075(10)
W(10)-O(35)	1.899(14)	W(10)-O(11)#1	2.014(10)	W(10)-O(32)#1	2.089(10)
Ni(1)-O(1W)	1.860(11)	Ni(1)-O(35)	1.895(12)	Ni(1)-O(28)	1.979(9)
Ni(1)-O(11) #1	2.017(9)	Ni(1)-O(9)	2.070(10)	Ni(1)-O(32) #1	2.083(10)
Ni(2)-O(26)	2.032(10)	Ni(2)-O(8W)	1.943(13)	Ni(2)-O(5)#1	2.033(10)
Ni(2)-O(22)#1	2.071(10)	Ni(2)-O(7W)	2.077(12)	Ni(2)-O(10W)	2.113(12)
Bi(1)-O(13)	2.107(9)	Bi(1)-O(10)	2.136(8)	Bi(1)-O(12)	2.140(9)
Na(1)-O(4)	2.282(12)	Na(1)-O(11W)	2.346(17)	Na(1)-O(3W)	2.469(13)
Na(1)-O(19) #1	2.353(12)	Na(1)-O(4W)	2.434(14)	Na(1)-O(5W)	2.476(14)
Na(2)-O(3w)	2.327(14)	Na(2)-O(6W)	2.361(15)	Na(2)-O(2w)	2.427(13)
Na(2)-O(9W)	2.390(15)	Na(2)-O(4W)	2.418(14)	Na(2)-O(5W)	2.408(13)
O(26)-W(1)-O(9)	102.6(5)	O(26)-W(1)-O(32)	103.0(5)	O(26)-W(1)-O(31)	94.5(4)
O(26)-W(1)-O(17)	96.4(4)	O(26)-W(1)-O(13)	163.8(4)	O(4)-W(2)-O(16)	102.4(5)
O(4)-W(2)-O(33)	100.2(5)	O(4)-W(2)-O(15)	99.6(5)	O(4)-W(2)-O(34)	97.9(5)
O(4)-W(2)-O(10)	170.6(4)	O(19)-W(3)-O(20)	101.6(4)	O(19)-W(3)-O(31)	99.3(4)
O(19)-W(3)-O(16)	100.9(4)	O(19)-W(3)-O(7)	96.4(4)	O(19)-W(3)-O(13)	168.7(4)
O(3)-W(4)-O(11)	103.1(5)	O(3)-W(4)-O(2)	101.1(5)	O(3)-W(4)-O(34)	100.2(4)
O(3)-W(4)-O(20)	100.0(5)	O(3)-W(4)-O(10)	173.7(4)	O(24)-W(5)-O(25)	96.9(5)
O(24)-W(5)-O(5)	104.0(5)	O(24)-W(5)-O(27)	100.2(5)	O(24)-W(5)-O(21)	96.5(5)
O(24)-W(5)-O(12)	167.0(4)	O(23)-W(6)-O(22)	105.0(5)	O(23)-W(6)-O(27)	103.2(5)
O(23)-W(6)-O(2)	95.2(5)	O(23)-W(6)-O(33)	94.1(5)	O(23)-W(6)-O(10)	162.5(4)
O(6)-W(7)-O(25)	101.1(5)	O(6)-W(7)-O(29)	101.6(5)	O(6)-W(7)-O(15)	100.2(5)
O(6)-W(7)-O(30)	97.9(5)	O(6)-W(7)-O(12)	171.5(4)	O(18)-W(8)-O(17)	98.7(5)
O(18)-W(8)-O(7)	97.0(5)	O(18)-W(8)-O(14)	101.5(4)	O(18)-W(8)-O(29)	100.5(5)

 Table S2: Selected bond lengths (Å) and angles (deg) for Compound 3.

O(18)-W(8)-O(13)	170.4(4)	O(8)-W(9)-O(28)	105.4(5)	O(8)-W(9)-O(14)	100.1(5)
O(8)-W(9)-O(21)	98.4(5)	O(8)-W(9)-O(30)	97.7(5)	O(8)-W(9)-O(12)	170.7(4)
O(1)-W(10)-O(35)	98.8(6)	O(1)-W(10)-O(28)	95.7(5)	O(1)-W(10)-O(11)	90.1(5)
O(1)-W(10)-O(9)	91.8(5)	O(1)-W(10)-O(32)	171.7(5)	O(8W)-Ni(2)-O(26)	88.6(5)
O(8W)-Ni(2)-O(5)#1	177.4(5)	O(8W)-Ni(2)-O(22)#1	100.1(5)	O(8W)-Ni(2)-O(7W)	83.3(6)
O(8W)-Ni(2)-O(10W)	87.2(6)	O(4)-Na(1)-O(19)	95.3(4)	O(4)-Na(1)-O(11W)	92.2(5)
O(4)-Na(1)-O(4W)	103.2(5)	O(4)-Na(1)-O(3W)	177.2(5)	O(4)-Na(1)-O(5W)	104.4(4)
O(3W)-Na(2)-O(9W)	85.3(5)	O(3W)-Na(2)-O(6W)	169.3(5)	O(3W)-Na(2)-O(4W)	80.5(5)
O(3W)-Na(2)-O(2W)	88.4(5)	O(3W)-Na(2)-O(5W)	82.6(5)		

W(1)-O(3)	1.72(3)	W(1)-O(32)	1.76(3)	W(1)-O(6)	1.95(3)
W(1)-O(29)#1	2.01(2)	W(1)-O(19)	2.12(2)	W(1)-O(8)#1	2.14(3)
W(2)-O(23)	1.76(3)	W(2)-O(8)	1.80(3)	W(2)-O(19)	1.83(2)
W(2)-O(2)	2.02(3)	W(2)-O(21)	2.09(3)	W(2)-O(33)	2.22(3)
W(3)-O(28)	1.70(3)	W(3)-O(31)	1.90(2)	W(3)-O(18)	1.93(2)
W(3)-O(20)	1.92(2)	W(3)-O(10)	2.00(2)	W(3)-O(30)	2.34(3)
W(4)-O(11)	1.75(3)	W(4)-O(18)	1.91(2)	W(4)-O(4)	1.93(2)
W(4)-O(27)	1.93(2)	W(4)-O(1)	2.00(2)	W(4)-O(17)	2.00(2)
W(5)-O(34)	1.71(3)	W(5)-O(21)	1.87(3)	W(5)-O(9)	1.94(2)
W(5)-O(22)	1.94(2)	W(5)-O(4)	1.96(2)	W(5)-O(33)	2.35(3)
W(6)-O(35)	1.74(3)	W(6)-O(7)	1.78(3)	W(6)-O(15)	1.93(2)
W(6)-O(14)	1.99(2)	W(6)-O(31)	2.04(3)	W(6)-O(30)	2.24(2)
W(7)-O(26)	1.74(3)	W(7)-O(1)	1.88(3)	W(7)-O(6)	1.89(3)
W(7)-O(22)	1.92(2)	W(7)-O(16)	1.95(2)	W(7)-O(17)	2.25(2)
W(8)-O(24)	1.76(2)	W(8)-O(12)	1.82(3)	W(8)-O(15)	1.94(2)
W(8)-O(16)	2.00(2)	W(8)-O(27)	2.05(3)	W(8)-O(17)	2.17(2)
W(9)-O(25)	1.75(2)	W(9)-O(10)	1.90(3)	W(9)-O(29)	1.91(3)
W(9)-O(14)	1.90(2)	W(9)-O(13)	1.97(2)	W(9)-O(30)	2.28(2)
W(10)-O(5)	1.71(2)	W(10)-O(2)	1.84(3)	W(10)-O(13)	1.88(3)
W(10)-O(9)	1.95(3)	W(10)-O(20)	1.98(2)	W(10)-O(33)	2.29(2)
Zn(1)-O(2W)	1.97(3)	Zn(1)-O(12)	2.05(3)	Zn(1)-O(23)#1	2.12(3)
Zn(1)-O(3W)	2.145(18)	Zn(1)-O(1W)	2.10(3)	Zn(1)-O(7)	2.16(3)
Bi(1)-O(30)	2.09(3)	Bi(1)-O(33)	2.13(2)	Bi(1)-O(17)	2.18(2)
Na(1)-O(28)#2	2.35(3)	Na(1)-O(5)	2.38(3)	Na(1)-O(8W)	2.42(3)
Na(1)-O(4W)	2.31(3)	Na(1)-O(10W)	2.43(3)	Na(1)-O(9W)	2.69(3)
Na(2)-O(8W)	2.28(3)	Na(2)-O(5W)	2.33(5)	Na(2)-O(6W)	2.72(4)
Na(2)-O(10W)	2.40(3)	Na(2)-O(7W)	2.47(3)	Na(2)-O(9W)	2.74(3)
O(3)-W(1)-O(32)	102.9(12)	O(23)-W(2)-O(8)	100.0(12)	O(28)-W(3)-O(31)	101.2(12)
O(3)-W(1)-O(19)	91.1(11)	O(23)-W(2)-O(19)	103.2(11)	O(28)-W(3)-O(18)	102.3(11)
O(3)-W(1)-O(6)	95.8(12)	O(23)-W(2)-O(2)	96.1(11)	O(28)-W(3)-O(20)	101.1(11)
O(3)-W(1)-O(29)#1	93.1(11)	O(23)-W(2)-O(21)	96.9(11)	O(28)-W(3)-O(10)	95.8(11)
O(3)-W(1)-O(8)#1	168.1(11)	O(23)-W(2)-O(33)	164.7(11)	O(28)-W(3)-O(30)	170.0(11)
O(11)-W(4)-O(18)	100.5(11)	O(34)-W(5)-O(21)	98.6(12)	O(35)-W(6)-O(7)	104.3(12)
O(11)-W(4)-O(4)	100.3(11)	O(34)-W(5)-O(9)	97.1(12)	O(35)-W(6)-O(15)	101.6(11)
O(11)-W(4)-O(27)	99.2(11)	O(34)-W(5)-O(22)	102.0(11)	O(35)-W(6)-O(14)	95.4(11)
O(11)-W(4)-O(1)	98.2(11)	O(34)-W(5)-O(4)	98.1(12)	O(35)-W(6)-O(31)	93.5(11)
O(11)-W(4)-O(17)	169.8(10)	O(34)-W(5)-O(33)	169.8(10)	O(35)-W(6)-O(30)	163.8(11)
O(26)-W(7)-O(1)	99.3(12)	O(24)-W(8)-O(12)	104.2(12)	O(25)-W(9)-O(10)	100.9(11)
O(26)-W(7)-O(6)	102.8(12)	O(24)-W(8)-O(15)	101.0(11)	O(25)-W(9)-O(29)	102.8(11)
O(26)-W(7)-O(22)	99.6(11)	O(24)-W(8)-O(16)	94.3(11)	O(25)-W(9)-O(14)	100.4(10)
O(26)-W(7)-O(16)	98.7(11)	O(24)-W(8)-O(27)	95.8(11)	O(25)-W(9)-O(13)	100.0(10)
O(26)-W(7)-O(17)	171.8(10)	O(24)-W(8)-O(17)	164.9(11)	O(25)-W(9)-O(30)	175.5(10)

 Table S3: Selected bond lengths (Å) and angles (deg) for Compound 4.

O(5)-W(10)-O(2)	101.0(11)	O(5)-W(10)-O(20)	100.7(11)	O(5)-W(10)-O(33)	169.7(10)
O(5)-W(10)-O(13)	101.6(11)	O(5)-W(10)-O(9)	96.6(12)	O(2W)-Zn(1)-O(12)	175.1(10)
O(2W)-Zn(1)-O(23)#1	87.5(11)	O(2W)-Zn(1)-O(3W)	93.0(10)	O(2W)-Zn(1)-O(1W)	87.0(11)
O(2W)-Zn(1)-O(7)	98.7(10)	O(28)#2-Na(1)-O(5)	96.1(10)	O(28)#2-Na(1)-O(8W)	177.6(12)
O(28)#2-Na(1)-O(4W)	95.6(14)	O(28)#2-Na(1)-O(10	102.3(11)	O(28)#2-Na(1)-O(9W)	92.8(10)
		W)			
O(8W)-Na(2)-O(5W)	96.4(16)	O(8W)-Na(2)-O(6W)	159.9(11)	O(8W)-Na(2)-O(10W)	80.7(11)
O(8W)-Na(2)-O(7W)	88.0(11)	O(8W)-Na(2)-O(9W)	86.4(10)		

Figure S1. View of the molecule structure unit of compound 3.

Figure S2. 1-D chain of compound **3** was made by sandwiched POM units and binuclear linkers $[Na_2(H_2O)_7]$.

Figure S3. IR spectra of compounds 3 (a) and 4 (b).

Figure S4. TG curve of compounds 3 (a) and 4 (b).

Figure S5. Cyclic voltammograms of compounds 3 (a) and 4 (b).

Figure S6. The influence of time on the stability of compounds **3** (a) and **4** (b) in the aqueous solution.

Figure S7. The influence of the pH value on the stability of compounds **3** (a) and **4** (b) in the aqueous solution. pH values of the acidic direction and alkaline direction were adjusted using diluted HCl solution and NaOH solution, respectively.