Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Electrophilic Iodination: A Gateway to High Iodine Compounds and Energetic Materials

Deepak Chand, Chunlin He, Lauren A. Mitchell, Damon A. Parrish and Jean'ne M Shreeve*

Table of Contents:

	Page
Isodesmic reactions and Gaussian and Gamess calculations	S2 S3
Table of crystallographic data for 5, 10 and 14.	S4
¹ H NMR, ¹³ C NMR, IR and DSC spectra of compounds 1-14	S5 S31

Calculations - University of Idaho

Gaussian Calculations

Geometric optimization and frequency analyses of the compounds in the isodesmic reactions were accomplished by using the B3LYP functional with the 6-31+G** basis set from Gaussian 03.^[1] All of the optimized structures were characterized to be true local energy minima on the potential energy surface without imaginary frequencies. The enthalpy of reaction is obtained by combining the MP2/6–311++G** energy difference for the reactions, the scaled zero point energies (ZPE), values of thermal correction (H_T), and other thermal factors. The gas phase heat of formation at 298.15K for compound **11** was calculated from the atomization energy at the G2 level, gas phase enthalpies of **12** and **14** were calculated based on isodesmic reactions in Scheme S1 at MP2/6-311++G(d,p)//B3LYP(6-31+G(d,p)) level. The gas phase enthalpies of formation of **11**, **12** and **14** were converted to the solid state enthalpies of formation by subtraction of sublimation enthalpy calculated according to Trouton's rule $(\Delta H_{sub} = 188T_m)$ (Table S1).^[2]

Scheme S1: Isodesmic reactions for compounds 12 and 14.

Table S1. Calculated (MP2/6-311++G**//B3LYP/6-31+G**) total energy (E₀), corrected MP2 total energy (E_{corr}), zero-point energy (*ZPE*), thermal correction to enthalpy (H_T), heat of reaction for the isodesmic reaction (Δ H_R) and gas phase heats of formation (Δ _fH_m°) from Gaussian 03.^[1]

	ZPE	H_{T}	E_0	ΔH_R	ΔH_{Sub}^{a} (kJ	$\Delta_{\rm f} {\rm H_m}^{\circ}({\rm g})$	$\Delta_{\rm f} H_{\rm m}^{\circ}({\rm s})$
	[Hartree/Particle]	[Hartree/Particle]	[Hartree/Particle]	(Hartree/Particle)	mol ⁻¹)	[kJ mol ⁻¹]	[kJ mol ⁻¹]
Benzene	0.100441	0.105785	-231.5842377	-	-	+82.9 ^b	-
Nitrobenzene	0.103043	0.110809	-435.6906555	-	-	+68.5 ^b	-
11	0.109795	0.1223	-895.031117	-	88.7	+604.2°	+515.5
12	0.110929	0.126049	-1099.084817	0.05495	79.1	+604.3	+525.2
14s	0.122904	0.131114	-453.9743248	-	-	-63.9 ^d	-
14	0.131244	0.149867	-1270.361893	-0.03684	107.5	-24.8	-132.3

^a Heat of sublimation calculated according to Trouton's rule (ΔH_{Sub} = 0.188T_d) ref: [2]. ^b Gas phase heat of formation NIST ref [3]; ^c Calculated from G2. ^d Experimental gas phase heat of formation ref [4]

Calculations - Dr. Jerry Boatz, Air Force Research Laboratory, Edwards Air Force Base, CA

GAMESS Calculations

The calculations for compound 14 were also performed by using GAMESS quantum chemistry program^[5,6] with a different isodesmic reaction shown in Scheme S2. The heat of reaction is obtained by combining corrected

Scheme S2: Isodesmic reaction for 14

B3LYP/6-311++(d,p) energy difference of the products and reactants calculated at B3LYP /6-311++g(d,p)//B3LYP6-311++g(d,p)) level. The gas phase heats of fomation for the related species were calculated from the atomization energy at the G3(MP2) level. The heat of sublimation was obtained using an approach developed by Rice and Byrd (Table S2).^[7,8]

Table S2:	Calcul	ation	of heat	of for	mation	of 1	4

	B3LYP/6- 311++(d,p)	B3LYP ZPE	B3LYP scaled ZPE	b3lyp elect+scaled ZPE	b3lyp thermal correction	ΔH_R (Hartree/ Particle)	ΔH _f kcal /mol	ΔH _f kJ /mol	ΔH _{Sub} (kJ mol ⁻¹)	$\Delta_{\rm f} {\rm H_m}^{\circ}({\rm s})$ [kJ mol ⁻¹]
14	-1272.842640	0.130986	0.128759	-1272.713881	0.018791	0.07378	1.5	6.3	120.9	-114.6
14s	-454.987584	0.122195	0.120118	-454.867467	0.008385			-62.9ª		
Hexanitro benzene	-1458.901699	0.111421	0.109527	-1458.792172	0.021663			279.1ª		
Benzene	-232.157071	0.099939	0.098240	-232.058831	0.005412			78.2ª		

^a Calculated based on G3(MP2) using GAMESS.

- [1] Gaussian03, RevisionD.01, M. J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian, Inc., Wallingford CT, 2004.
- [2] M. S. Westwell, M. S. Searle, D. J. Wales and D. H. Williams, J. Am. Chem. Soc., 1995, 117, 5013–5015.
- [3] http://webbook.nist.gov/chemistry/
- [4] V. M. F. Morais, M. S. Miranda, M. A. R. Matos, J. F Liebman, Mol. Phys. 2006, 104, 325-334.
- [5] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J.A Montgomery. J. Comput. Chem. 1993, 14, 1347–1363
- [6]. M. S. Gordon, M. W. Schmidt. Advances in Electronic Structure Theory, in Theory and Applications of Computational Chemistry: The First Forty Years; Dykstra, C.; Frenking, G.; Kim, K.; Scuseria, G., Eds.; Elsevier: Amsterdam, 2005; pp 1167–1190.
- [7] E.F.C. Byrd, B. M. Rice. J. Phys. Chem. A 2006, 110 (3), 1005–1013; ibid 2009, 113, 5813.
- [8] E.F.C. Byrd, B. M Rice. J. Phys. Chem. A 2009, 113 (1), 345-352.

Table S3. Crystallographic data for 5, 10 and 14

Compound	5	10∙C₂H₅OS	14•C ₄ H ₈ O ₂			
Formula	$C_8H_5I_2N_7O_4$	$C_9H_8I_2N_4O_5S$	C ₁₁ H ₁₀ N ₆ O ₁₁			
CCDC number	1424001	1424002	1424003			
M _w	516.99	538.05	402.25			
Crystal size [mm ³]	0.209 x 0.034 x 0.005	0.123 x 0.057 x 0.032	0.310 x 0.175 x 0.058			
Crystal system	Monoclinic	Monoclinic	Triclinic			
Space group	P2 ₁ /c	P2 ₁ /c	P-1			
a [Å]	16.6797(6)	5.34160(10)	7.8304(7)			
b [Å]	98.956(2)	25.7684(6)	9.3182(8)			
c [Å]	9.1213(3)	11.3694(3)	12.2176(11)			
α[°]	90	90	102.459(3)			
β [°]	107.606(19)	97.2720(10)	104.030(3)			
<i>۲</i> [°]	90	90	100.776(3)			
V [Å3]	1339.59(8)	1552.35(6)	817.12(13)			
Ζ	4	4	2			
<i>Т</i> [K]	150(2)	273(2)	296(2)			
ρ _{calcd} [Mg m ⁻³]	2.498	2.302	1.635			
μ [mm-1]	37.190	4.211	0.149			
<i>F</i> (000)	960	1008	412			
θ[°]	2.682 to 68.705	3.613 to 26.381	2.506 to 26.422			
Index ranges	-17<=h<=20 -10<=k<=10 -10<=l<=10	-6<=h<=6 -32<=k<=32 -14<=l<=14	-8<=h<=9 -11<=k<=11 -15<=l<=15			
Reflections collected	7543	14724	7885			
Independent reflections (R _{int})	2389 [<i>R</i> (_{int}) = 0.0453]	3168 [R(_{int}) = 0.0346]	3321 [<i>R</i> (_{int}) = 0.0157]			
Data/restraints/parameters	2389 / 1 / 193	3168 / 0 / 196	3321 / 0 / 275			
GOF on F ²	1.024	0.827	1.069			
$R_1 (l > 2\delta(l))^{\circ}$	0.0322	0.0275	0.0381			
$wR_2 (I > 2\delta (I))^b$	0.0718	0.0758	0.1067			
R ₁ (all data)	R ₁ = 0.0536	0.0410	0.0536			
wR_2 (all data)	0.0797	0.0853	0.1197			
Largest diff. peak and hole [e. Å-3]	0.830 and -0.874	0.855 and -0.449	0.257 and -0.203			
$_{B}R_{1} = \Sigma F_{0} - F_{c} / \Sigma F_{0} $ $_{B}R_{2} = [\Sigma w(F_{0}^{2} - F_{c}^{2})^{2} / \Sigma w(F_{0}^{2})^{2}]^{1/2}$						

%Transmittance

%Transmittance

Wavenumber

ppm 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0

S19

Wavenumber

50 PHTRISTIP(2) 476.3 688.7 1095.6 45 874.7-790.9 40 N 1021.2 966.3 IR %Transmittance 3086.2 1350.2 1431.2 2922.1 35 1472.9-30 1602.8-1308.2 25 20 2500 2000 1500 1000 500 3000

Wavenumber

%Transmittance

