Structure determination of Ba₅AlF₁₃ by coupling electron, synchrotron and neutron powder diffraction, solid-state NMR and ab initio calculations⁺

Charlotte Martineau, Mathieu Allix, Matthew R. Suchomel, Florence Porcher, François Vivet, Christophe Legein, Monique Body, Dominique Massiot, Francis Taulelle and Franck Fayon

Electronic Supplementary Information.

Table of content

Fig. S1 Experimental and calculated room-temperature SPD patterns of Ba ₅ AlF ₁₃
Table S1 Atomic coordinates of Ba ₅ AlF ₁₃ (SPD data, NPD ordered)
Table S2 Al-F distances in Ba ₅ AlF ₁₃
Table S3 Ba-F distances in Ba ₅ AlF ₁₃ 4
Fig. S2 Correlation between the ¹⁹ F GIPAW calculated shieldings and experimental isotropic chemical
shift values for BaF_2 , $Ba_5Al_3F_{19}$ and β - $BaAlF_5$
Fig. S3 Residual density on difference Fourier maps obtained for different approximation models of the
thermal parameter of F36
Table S4 Comparison of the final reliability factors and number of independent thermal parameters for
the different refinement models
Table S5 Gram-Charlier expansion parameters (third and fourth order anharmonic tensors
Table S6 Atomic coordinates of Ba ₅ AlF ₁₃ (NPD disordered anharmonic)

Fig. S1. Experimental (dots) and calculated (red line) room-temperature SPD patterns of Ba_5AlF_{13} . The Bragg positions (vertical ticks) and the difference between the experimental and calculated data are shown. The fit statistics are: $R_p = 6.07\%$, $R_{wp} = 8.93\%$, $R_{Bragg} = 4.79\%$.

	Atom	Site	Occupancy	Symmetry	Х	У	Z
SPD	Al1	16d	1	-3m	0.5	0.5	0.5
SPD_GO					0.5	0.5	0.5
NPD					0.5	0.5	0.5
SPD	Ba1	32e	1	3m	0.2898(2)	0.2898(2)	0.2898(2)
SPD_GO					0.2899	0.2899	0.2899
NPD					0.2898(2)	0.2898(2)	0.2898(2)
SPD	Ba2	48f	1	2.mm	0.0718(3)	1/8	1/8
SPD_GO					0.06618	1/8	1/8
NPD					0.0717(3)	1/8	1/8
SPD	F1	96g	1	mm	0.4789(2)	0.4789(2)	0.1417(2)
SPD_GO					0.4786	0.4786	0.1411
NPD					0.4786(2)	0.4786(2)	0.1409(2)
SPD	F2	96g	1	mm	0.3192(1)	0.3192(1)	0.5357(2)
SPD_GO					0.3195	0.3195	0.5358
NPD					0.3198(1)	0.3198(1)	0.5353(2)
SPD	F3	8a	1	-43m	1/8	1/8	1/8
SPD_GO					1/8	1/8	1/8
NPD					1/8	1/8	1/8
SPD	F4	8b	1	-43m	3/8	3/8	3/8
SPD_GO					3/8	3/8	3/8
NPD					3/8	3/8	3/8

Table S1. Atomic coordinates of Ba₅AlF₁₃ according to the experimental SPD and NPD data (SPD, NPD) after geometry optimization (SPD_GO), in the ordered model.

Table S2. Al-F distances (Å) in Ba₅AlF₁₃ according to the experimental SPD and NPD data (SPD, NPD) after geometry optimization (SPD_GO) in the ordered model.

SPD	1.812	NPD	1.823
SPD_GO	1.818		

Ba1							
SPD	2.565	NPD	2.565				
	2.631		2.612				
	2.827		2.815				
SPD_GO	2.564						
	2.627						
	2.825						

Table S3. Ba-F distances (Å) in Ba_5AIF_{13} according to the experimental SPD and NPD data (SPD, NPD) after geometry optimization (SPD_GO) in the ordered model.

Ba2

SPD	2.703	NPD	2.706
	2.824		2.821
	2.833		2.830
SPD_GO	2.677		
	2.861		
	2.914		

Fig. S2 Correlation between the ¹⁹F GIPAW calculated isotropic shieldings and experimental isotropic chemical shift values for BaF₂ (black squares), Ba₅Al₃F₁₉. (blue circles) and β -BaAlF₅ (red triangles). The dashed line is the linear regression: $\delta_{iso,exp}/CFCl_3 = -0.87 \sigma_{iso,cal} + 117 (R^2 = 0.993)$.

Fig. S3 Residual density on difference Fourier maps obtained for different approximation models of the thermal parameter of F3: (a) harmonic anisotropic, (b) anharmonic third order and (c) anharmonic fourth order.

Table S4 Comparison	of the final	reliability	factors	and number	of independent	thermal	parameters	for
the different refinemen	it models.							

	Number of independent thermal parameters	GOF (%)	R _p (%)	wR _p (%)
Harmonic anisotropic 32e site	2	1.63	2.59	3.30
Anharmonic 3 rd order 32e site	6	1.54	2.45	3.11
Anharmonic 4 th order 32e site	7	1.37	2.20	2.78

Table S5 Gram-Charlier expansion parameters (third and fourth order anharmonic tensors $(x10^2)$) for Ba₅AlF₁₃.

Aton	n Cl	11	C112	<i>C113</i>	C122	<i>C123</i>	C133	<i>C222</i>	<i>C223</i>	<i>C233</i>	<i>C333</i>
F3	-3.	4921	-5.4514	-5.4514	-5.4514	-6.1281	-5.4514	-3.4921	-5.4514	-5.4514	-3.4921
	Equa	tions du	ue to the s	ite symme	etry 32e for	F3: C111	=C222=C3	33 ; C112=	=C113=C1	22=C133=	=C223.
1	4tom	D1111	D1112	D1113	D1122	D1123	D1133	D1222	D1223	D1233	D1333
_	F3	4.4035	5 -9.634	-9.634	-4.2394	-1.5601	-4.2394	-9.634	-1.5601	-1.5601	-9.634
	D2222	2 D22	223 D	2233	D2333	D3333	_				
	4.4035	5 -9.6	534 -4	.2394 -	-9.634	4.4035	_				
							_				

Equations due to the site symmetry 32e for F3: D1111=D2222=D3333 ;

D1112=D1113=D1222=D1333=D2223=D2333; D1122=D1133=D2233; D1123=D1223=D1233

Table S6 Atomic coordinates of Ba₅AlF₁₃ resulting from anharmonic 4th order Rietveld refinement of the NPD data.

Atom	Site	Occupancy	Symmetry	X	У	Z
Al1	16 <i>d</i>	1	-3m	0.5	0.5	0.5
Ba1	32 <i>e</i>	1	3m	0.2902(2)	0.2902(2)	0.2902(2)
Ba2	48 <i>f</i>	1	2.mm	0.0723(2)	1/8	1/8
F1	96g	1	mm	0.4768(1)	0.4768(1)	0.1438(2)
F2	96g	1	mm	0.3194(1)	0.3194(1)	0.5353(2)
F3	32e	0.25	3m	0.099(4)	0.099(4)	0.099(4)
F4	8b	1	-43m	3/8	3/8	3/8

_