Electronic Supplementary Information (ESI) for

Switching between Porphyrin, Porphodimethene and Porphyrinogen using Cyanide and Fluoride ions mimicking Volatile Molecular Memory and 'NOR' Logic Gate

Mandeep K. Chahal and Muniappan Sankar

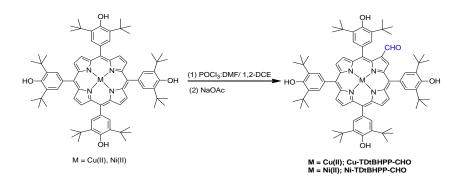
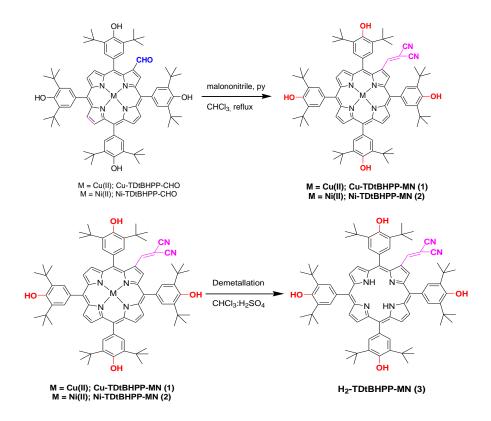

Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India

Table of Contents


	Page No
Scheme S1. Multigram scale preparation of β -formyl substituted porphyrins.	3
Scheme S2. Synthetic procedure for targeted porphyrins 1, 2 and 3.	3
Figure S1. MALDI-TOF mass spectrum of Cu-TDtBHPP-CHO.	4
Figure S2. ¹ H NMR spectrum of Ni-TDtBHPP-CHO.	4
Figure S3. ¹³ C NMR spectrum of Ni-TDtBHPP-CHO.	5
Figure S4. MALDI-TOF mass spectrum of Ni-TDtBHPP-CHO.	5
Figure S5. MALDI-TOF mass spectrum of Cu-TDtBHPP-MN (1).	6
Figure S6. ¹ H NMR spectrum of Ni-TDtBHPP-MN (2).	6
Figure S7. ¹³ C NMR spectrum of Ni-TDtBHPP-MN (2).	7
Figure S8. MALDI-TOF mass spectrum of Ni-TDtBHPP-MN (2).	7
Figure S9. ¹ H NMR spectrum of H ₂ -TDtBHPP-MN (3).	8
Figure S10. ¹³ C NMR spectrum of H ₂ -TDtBHPP-MN (3).	8
Figure S11. MALDI-TOF mass spectrum of H_2 -TDtBHPP-MN (3).	9
Figure S12. UV/Vis titration of CN^{-} (0 – 9.32×10 ⁻⁵ M) to Cu-TDtBHPP-MN (1) (8 μ M).	11
Figure S13. UV/Vis titration of $CN^{-}(0 - 9.32 \times 10^{-5} \text{ M})$ to Ni-TDtBHPP-MN (2) (8 μ M).	11
Figure S14. ¹ H NMR spectra of the adduct [2·CN] ⁻ after addition of CN ⁻ ions (1 equiv.) to Ni-	12
TDtBHPP-MN (2) $(5 \times 10^{-3} \text{ M})$ in CDCl ₃ at 298 K.	
Figure S15. Cyclic voltammetric traces of Cu-TDtBHPP-MN(1) (left) and Ni-TDtBHPP-MN(2) (right) in	12
absence and presence of CN^- ions containing 0.1 M TBAPF ₆ at 298 K.	
Figure S16. UV/Vis titration of $F^{-}(0-10^{-3} \text{ M})$ to Ni-TDtBHPP-MN (2) (8 μ M) changing porphyrin to	13
porphodimethene.	
Figure S17. ¹ H NMR spectra of 2 with increasing concentration of F ⁻ ions (0-10 equiv.) in CDCl ₃ , 500	13
MHz.	
Figure S18. Cyclic voltammetric traces of Cu-TDtBHPP-MN(1) (left) and Ni-TDtBHPP-MN(2) (right) in	14
absence and presence of F^- ions containing 0.1 M TBAPF ₆ at 298 K.	
Figure S19. UV/Vis titration of $F^{-}(0-4\times10^{-3} \text{ M})$ to (Ni-TDtBHPP-MN + CN ⁻) (6 μ M) changing anionic	14
porphyrin to anionic porphodimethene.	
Figure S20. Absorption spectra and colorimetric changes for Cu-TDtBHPP-MN (1) (8 μ M) in the	15
presence of different anions. Changes observed only for F^- and CN^- ions.	
Figure S21. Absorption spectra and colorimetric changes for Ni-TDtBHPP-MN (2) (8 μ M) in the	15
presence of different anions. Changes observed only for F^- and CN^- ions.	
Figure S22. Visual response for reversibility for F ⁻ ions (left) and UV/Vis response for reversibility for	16

F^- ions in case of 1 (right) (metalloporphyrin spectrum regenerated with marginal shift in Qx(0,0) band).	
Figure S23. Visual response for reversibility for F ⁻ ions (left) and UV/Vis response for reversibility for	16
F^- ions in case of 2 (right) (distortion in Q bands are more probably due to autoxidation).	
Figure S24. (a) UV/Vis response for reversibility for F ⁻ ions using trifluoroacetic acid (TFA) in case of	17
Cu-TDtBHPP-MN (1). (b) UV/Vis response for reversibility for F ⁻ ions using CH ₃ OH in case of Cu-	
TDtBHPP-MN (1).	
Figure S25. Effect of water on anionic porphyrin formed after the addition of cyanide ions to Ni-	17
TDtBHPP-MN (2).	
Figure S26. (a) Electronic absorbance changes upon addition of CN^{-} (0-2.5×10 ⁻⁴ M)	18
(b) Fluorescence emission intensity changes upon addition of CN^{-} (0-2×10 ⁻⁴ M) into 3 in CH_2Cl_2	
(conversion of porphyrin to anionic porphyrin).	
Figure S27. (a) Electronic absorbance changes upon addition of F^- (0-9.5x10 ⁻⁴ M) and (b) fluorescence	18
emission intensity changes upon addition of F^- (0-8.5x10 ⁻⁴ M) into 3 in CH ₂ Cl ₂ (conversion of porphyrin	
to porphyrinogen).	
Figure S28. Fluorescence emission intensity changes of 3 for reversibility and reusability tests with	19
F ⁻ ions (left) and their corresponding colorimetric response (right).	
Figure S29. UV-Visible spectral changes of 3 for reversibility and reusability tests with F ⁻ ions (left) and	19
their corresponding colorimetric response (right).	
Figure S30. (a) Electronic absorbance changes upon addition of F^- (0-2.5x10 ⁻³ M) and (b) Fluorescence	20
emission intensity changes upon addition of F^- (0-2x10 ⁻³ M) into 5 in CH ₂ Cl ₂ (conversion of anionic	
porphyrin to anionic porphyrinogen).	
Figure S31. Fluorescence emission intensity changes of 5 with F ⁻ ions.	20
Figure S32. UV-Visible spectral changes of 5 for reversibility and reusability tests with F ⁻ ions using L-	20
ascorbic acid (left) and their corresponding Colorimetric response (right).	
Figure S33. The "writing–erasing" cycle of 3 and 5.	21
Figure S34. Repeated memory cycles using 1A (left) and 1B (right) in which one state was detected by	22
the absorbance for porphyrin and other state by the absorbance for porphodimethene in CH ₂ Cl ₂ for Cu-	
TDtBHPP-MN(1). Photographs showed the colour of each state under 'naked-eye'.	
Figure S35. Repeated memory cycles using 1A (left) and 1B (right) in which one state was detected by	22
the absorbance for porphyrin and other state by the absorbance for porphodimethene in CH ₂ Cl ₂ for Ni-	
TDtBHPP-MN(2). Photographs showed the colour of each state under 'naked-eye'.	
Figure S36. (a) Electronic absorbance and (b) fluorescence emission intensity changes upon	23
addition of 10 equivalents of different tetra- <i>n</i> -butylammonium salts into CH_2Cl_2 solution of 3 .	
Figure S37. Analytical calibration curve using a simple liner curve fit, with error estimation of Cu-	23
TDtBHPP-MN (1) for fluoride addition.	
Figure S38. Analytical calibration curve using a simple liner curve fit, with error estimation of Cu-	24
TDtBHPP-MN (1) for cyanide addition.	
Figure S39. Analytical calibration curve using a simple liner curve fit, with error estimation of H_2 -	25
TDtBHPP-MN (3) for cyanide addition.	
Figure S40. Analytical calibration curve using a simple liner curve fit, with error estimation of H_2 -	26
TDtBHPP-MN (3) for fluoride addition.	
Figure S41. Coefficients of the first HOMO and the first LUMO for the optimized H ₂ -TDtBHPP,	28
3, 5, 4.2F ⁻ , 4 and 6.2F ⁻ .	
Table S1. Crystal data of Cu-TDtBHPP-CHO.	9

Table S2. Optical absorption spectral data of synthesized porphyrins in CH_2Cl_2 at 298 K.	10
Table S3. Electrochemical Redox Data (vs Ag/AgCl) of synthesized porphyrins in CH ₂ Cl ₂ Containing 0.1	10
M TBAPF ₆ at 298 K.	
Table S4. B3LYP/LANL2DZ calculated parameters for the investigated porphyrin and porphyrinogen for	27
1.	
Table S5. B3LYP/LANL2DZ calculated parameters for the investigated porphyrin and porphodimethene	27
for 2 .	
Table S6. Tunable two-input/multi-output system for 1 using CN^- and F^- as inputs.	29
Table S7. Tunable two-input/multi-output system for 2 using CN^- and F^- as inputs.	29

Scheme S1. Multigram scale preparation of β -formyl substituted porphyrins.

Scheme S2. Synthetic procedure for targeted porphyrins 1, 2 and 3.

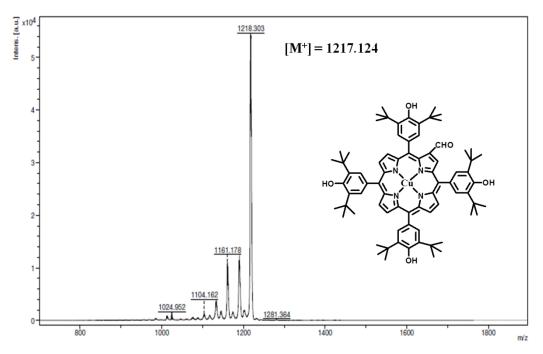


Figure S1. MALDI-TOF mass spectrum of Cu-TDtBHPP-CHO.

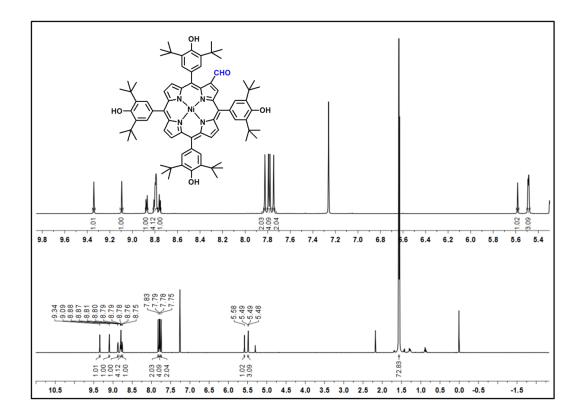


Figure S2. ¹H NMR spectrum of Ni-TDtBHPP-CHO.

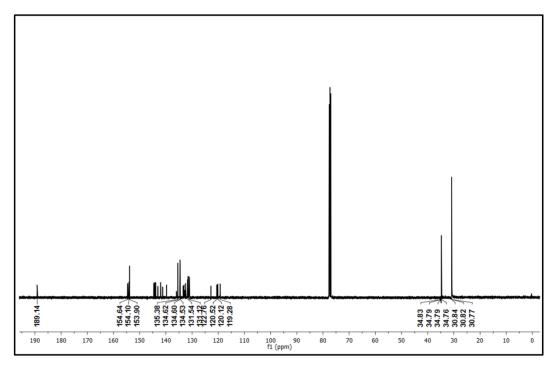


Figure S3. ¹³C NMR spectrum of Ni-TDtBHPP-CHO.

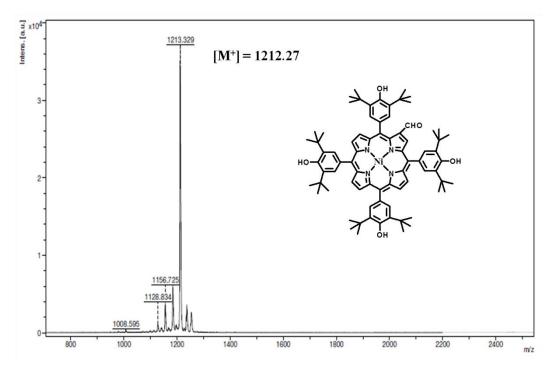


Figure S4. MALDI-TOF mass spectrum of Ni-TDtBHPP-CHO.

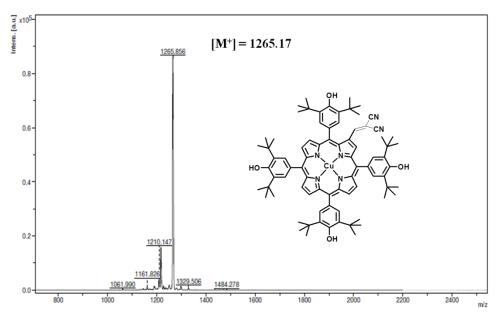


Figure S5. MALDI-TOF mass spectrum of Cu-TDtBHPP-MN (1).

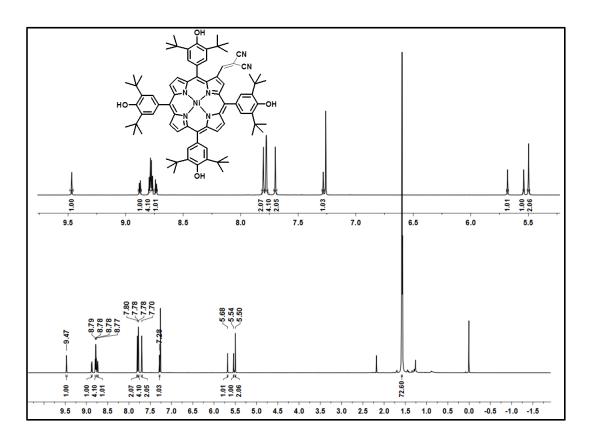
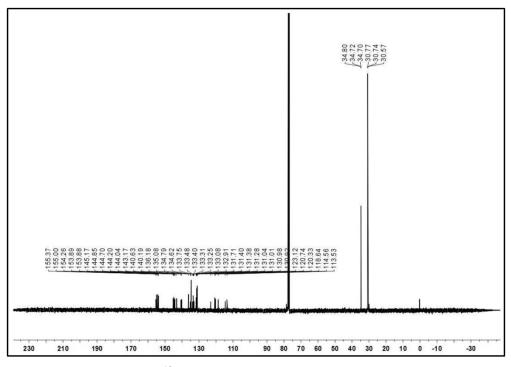



Figure S6. ¹H NMR spectrum of Ni-TDtBHPP-MN (2).

Figure S7. ¹³C NMR spectrum of Ni-TDtBHPP-MN (2).

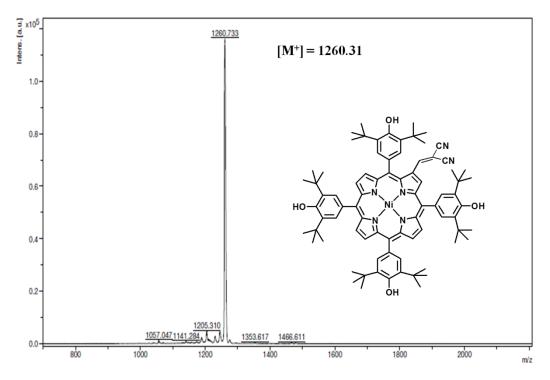
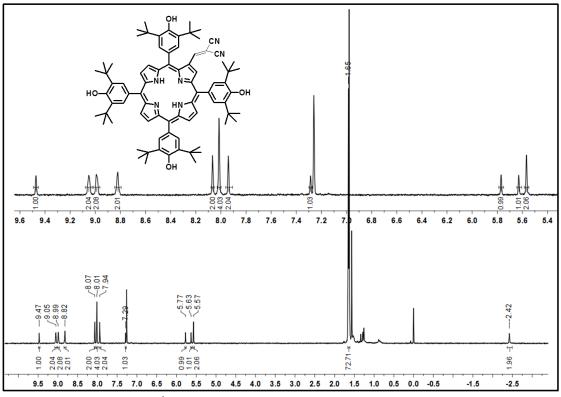



Figure S8. MALDI-TOF mass spectrum of Ni-TDtBHPP-MN (2).

Figure S9. ¹H NMR spectrum of H₂-TDtBHPP-MN (**3**).

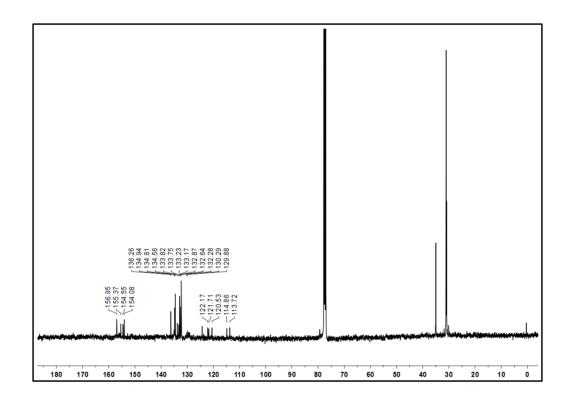


Figure S10. 13 C NMR spectrum of H₂-TDtBHPP-MN (3).

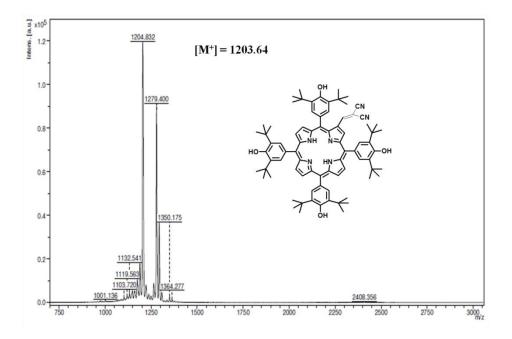


Figure S11. MALDI-TOF mass spectrum of H₂-TDtBHPP-MN (3).

Table S1. Crystal data of	Cu-TDtBHPP-CHO	
Empirical formula	$C_{83}H_{105}N_4O_5Cu$	
Formula Weight	1303.26	
Crystal system	Triclinic	
Space group	P-1	
a (Å)	10.8479(4)	
b (Å)	14.6207(5)	
c (Å)	15.9745(5)	
α (°)	70.078(2)	
β (°)	76.389(2)	
γ (°)	68.533(2)	
Volume ($Å^3$)	2198.97(13)	
Z	1	
$D_{cald} (g/cm^3)$	0.984	
Wavelength	0.71073	
Temperature (K)	296 K	
No. of total reflections	10936	
No. of independent	6457	
reflections		
R ^a	0.0568	
R_w^{b}	0.1609	
CCDC	1451709	

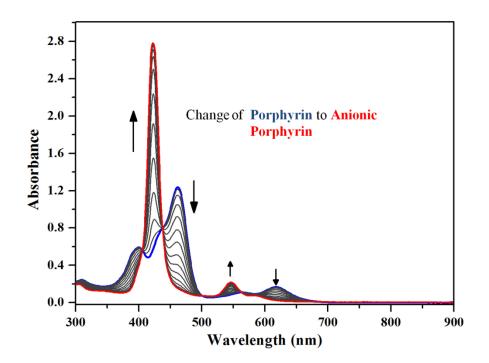
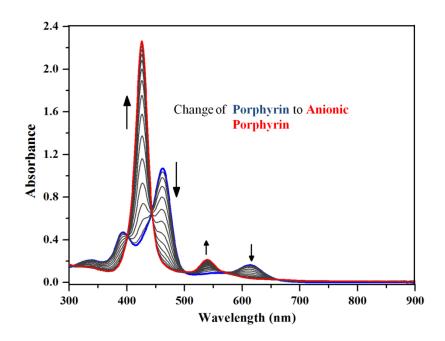
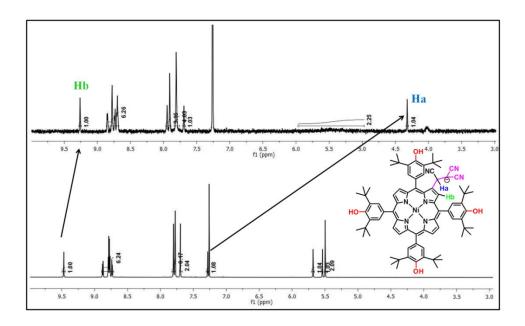
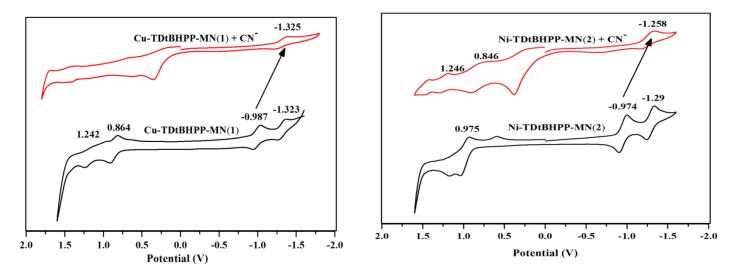

Porphyrin	B band(s), nm	Q band(s), nm
Ni-TDtBHPP	422	532
Cu-TDtBHPP	422	542, 581
H ₂ -TDtBHPP	425	522,559,596,652
Ni-TDtBHPP-CHO	436	545,586
Cu-TDtBHPP-CHO	435	555,598
Ni-TDtBHPP-MN (2)	393,462	554,613
Cu-TDtBHPP-MN (1)	400,462	563,618
H ₂ -TDtBHPP-MN (3)	415,464	541,625,689

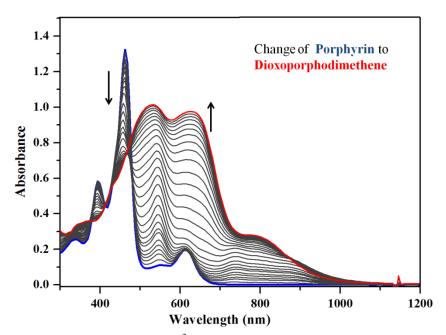
Table S2. Optical absorption spectral data of synthesized porphyrins in CH₂Cl₂ at 298 K.

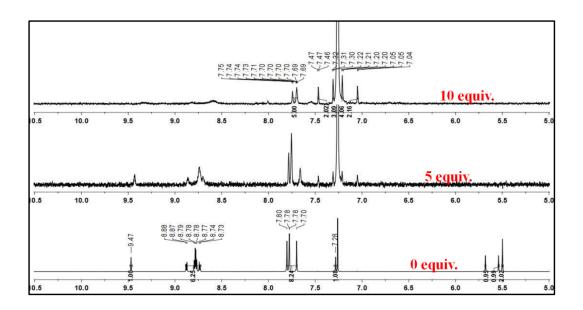

Table S3. Electrochemical Redox Data (vs Ag/AgCl) of synthesized porphyrins in CH_2Cl_2 containing 0.1 M TBAPF₆ at 298 K. Scan rate 0.1 Vs⁻¹.

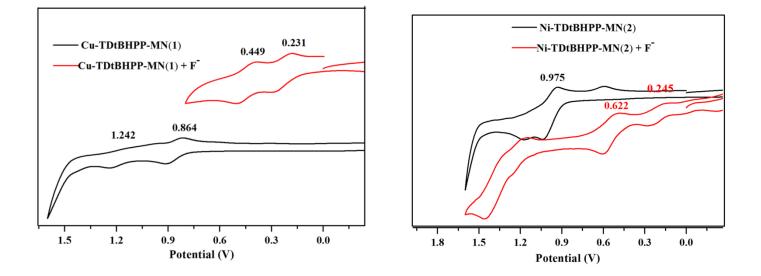
Downhamin	Oxidatio	n(V)	$\Delta E_{1/2}(V)$	Redu	ction(V)
Porphyrin	Ι	п		Ι	II
Ni-TDtBHPP	0.87 ^a		2.24	-1.370 ^a	
Cu-TDtBHPP	0.76		2.19	-1.430	
Cu-TDtBHPP-CHO	0.82	1.16	2.04	-1.220	-1.590
Ni-TDtBHPP-CHO	0.933		2.122	-1.189	-1.323
Cu-TDtBHPP-MN (1)	0.864	1.242	1.850	-0.987	-1.300
Ni-TDtBHPP-MN (2)	0.975		1.949	-0.974	-1.150
H ₂ -TDtBHPP-MN (3)	0.989		1.878	-0.889	

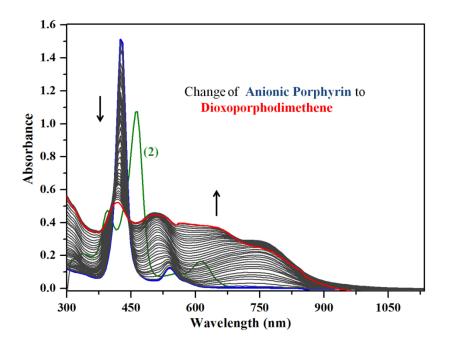

 $\Delta E_{1/2} = I_{oxd.}$ - $I_{red.}$ Pt working and Pt wire counter electrodes were used. ^aData taken from DPV.

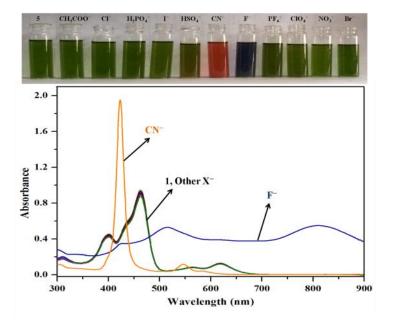

Figure S12. UV/Vis titration of CN^- (0 - 9.32×10⁻⁵ M) to Cu-TDtBHPP-MN (1) (8 μ M).

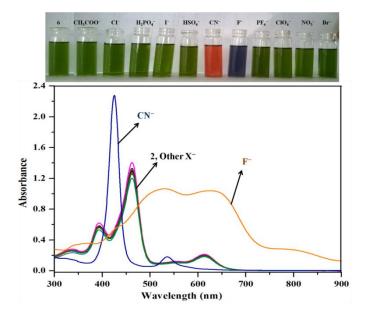

Figure S13. UV/Vis titration of CN^{-} (0 - 9.32×10⁻⁵ M) to Ni-TDtBHPP-MN (2) (8 μ M).

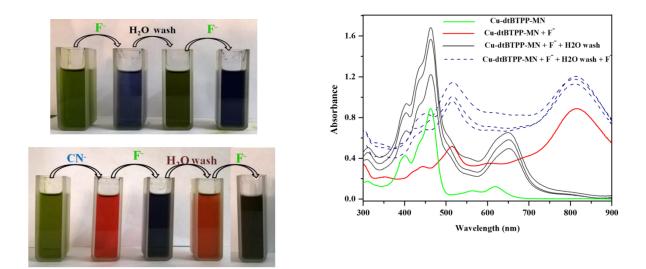

Figure S14. ¹H NMR spectra of the adduct $[2 \cdot CN]^-$ after addition of CN^- ions (1 equiv.) to Ni-TDtBHPP-MN (2) (5×10⁻³ M) in CDCl₃ at 298 K.

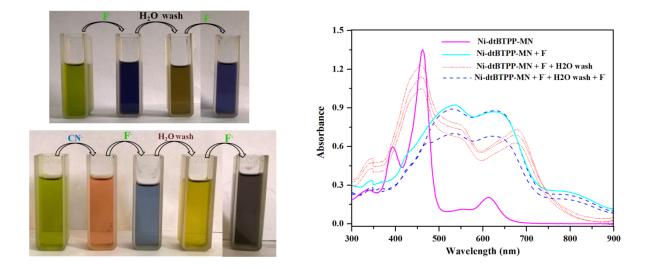

Figure S15. Cyclic voltammetric traces of Cu-TDtBHPP-MN (1) (left) and Ni-TDtBHPP-MN(2) (right) in absence and presence of CN^- ions containing 0.1 M TBAPF₆ at 298 K.

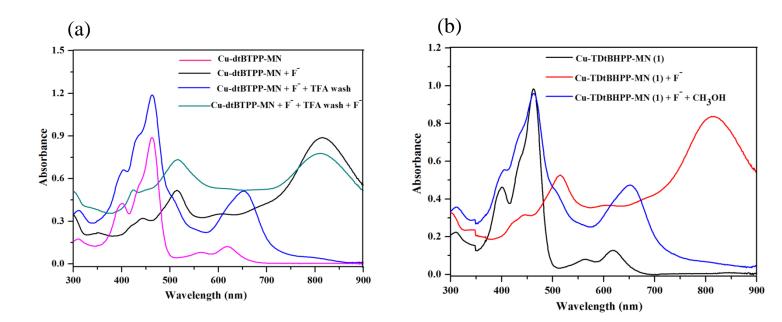

Figure S16. UV/Vis titration of $F^-(0-10^{-3} \text{ M})$ to Ni-TDtBHPP-MN (2) (8 μ M) changing porphyrin to porphodimethene.

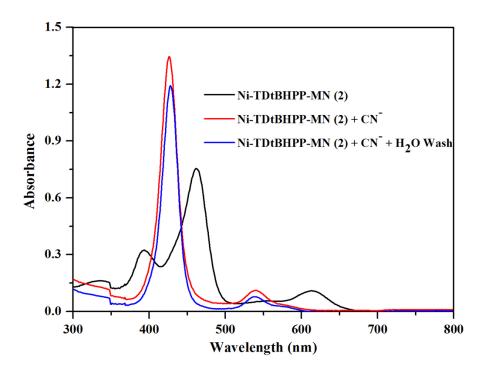

Figure S17. ¹H NMR spectra of **2** with increasing concentration of F^- ions (0-10 equiv.) in CDCl₃, 500 MHz.

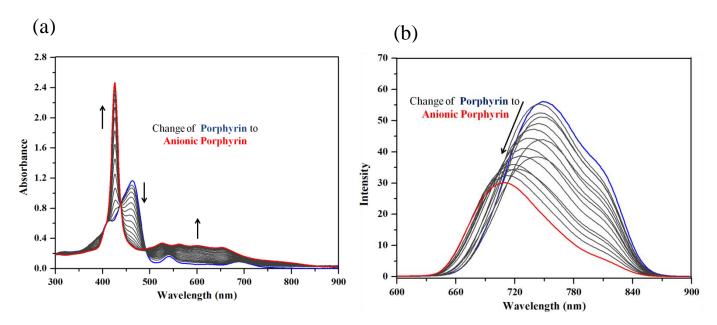

Figure S18. Cyclic voltammetric traces of Cu-TDtBHPP-MN (1) (left) and Ni-TDtBHPP-MN (2) (right) in absence and presence of F^- ions containing 0.1 M TBAPF₆ at 298 K.

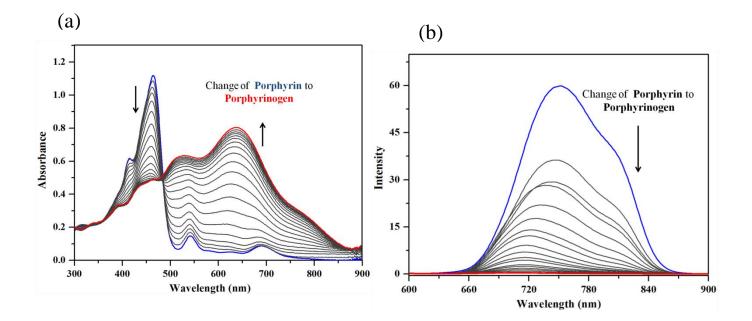

Figure S19. UV/Vis titration of $F^{-}(0-4X10^{-3} \text{ M})$ to (Ni-TDtBHPP-MN + CN⁻) (6 μ M) changing anionic porphyrin to anionic porphodimethene.

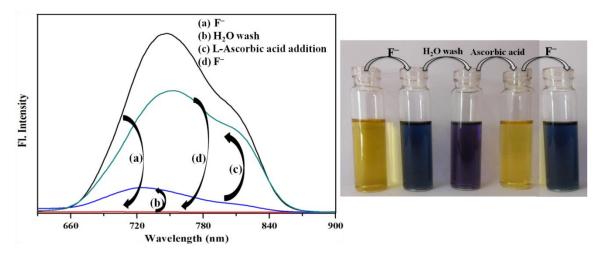

Figure S20. Absorption spectra and colorimetric changes for Cu-TDtBHPP-MN (1) (8 μ M) in the presence of different anions. Changes observed only for F⁻ and CN⁻ ions.


Figure S21. Absorption spectra and colorimetric changes for Ni-TDtBHPP-MN (2) (8 μ M) in the presence of different anions. Changes observed only for F⁻ and CN⁻ ions.


Figure S22. Visual response for reversibility for F^- ions (left) and UV/Vis response for reversibility for F^- ions in case of 1 (right) (metalloporphyrin spectrum regenerated with marginal shift in Qx(0,0) band).


Figure S23. Visual response for reversibility for F^- ions (left) and UV/Vis response for reversibility for F^- ions in case of **2** (right) (distortion in Q bands are more probably due to autoxidation).


Figure S24. (a) UV/Vis response for reversibility for F^- ions using trifluoroacetic acid (TFA) in case of Cu-TDtBHPP-MN (1). (b) UV/Vis response for reversibility for F^- ions using CH₃OH in case of Cu-TDtBHPP-MN (1).


Figure S25. Effect of water on anionic porphyrin formed after the addition of cyanide ions to Ni-TDtBHPP-MN (2).

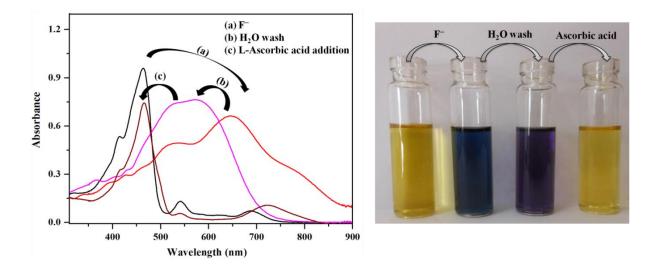
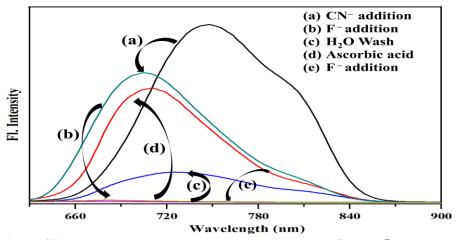

Figure S26. (a) Electronic absorbance changes upon addition of CN^- (0-2.5x10⁻⁴M) (b) Fluorescence emission intensity changes upon addition of CN^- (0-2x10⁻⁴M) into **3** in CH₂Cl₂ (conversion of porphyrin to anionic porphyrin).


Figure S27. (a) Electronic absorbance changes upon addition of F^- (0-9.5x10⁻⁴M) and (b) fluorescence emission intensity changes upon addition of F^- (0-8.5x10⁻⁴M) into **3** in CH₂Cl₂ (conversion of porphyrin to porphyrinogen).


Figure S28. Fluorescence emission intensity changes of **3** for reversibility and reusability tests with F^- ions (left) and their corresponding colorimetric response (right).

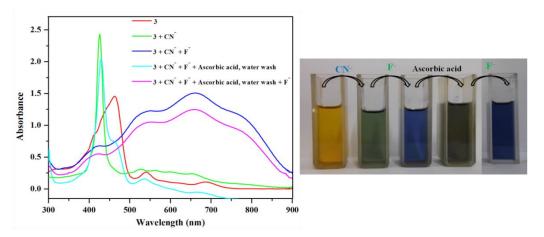
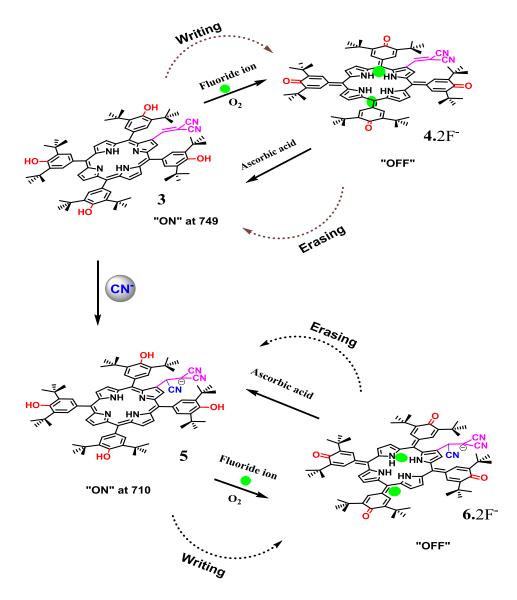
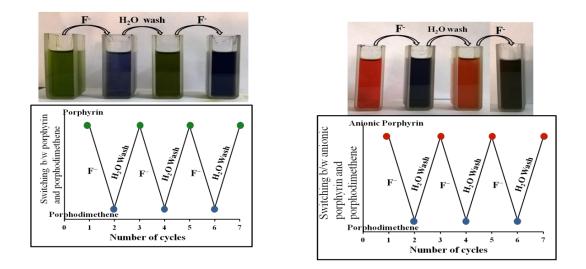
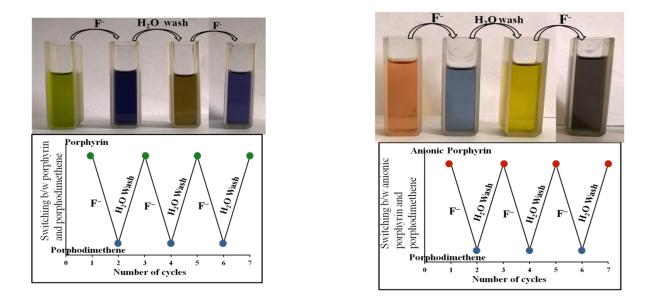
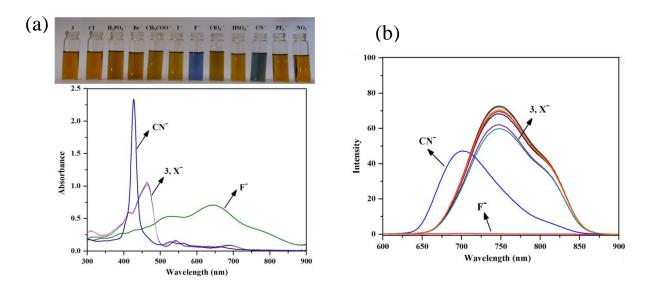

Figure S29. UV-Visible spectral changes of **3** for reversibility and reusability tests with F^- ions (left) and their corresponding colorimetric response (right).

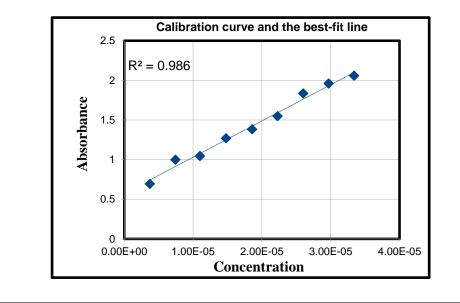
Figure S30. (a) Electronic absorbance changes of **5** upon addition of F^- (0-2.5x10⁻³M) and (b) Fluorescence emission intensity changes upon addition of F^- (0-2x10⁻³M) into **5** in CH₂Cl₂ (conversion of anionic porphyrin to anionic porphyrinogen).

Figure S31. Fluorescence emission intensity changes of **5** with F⁻ ion.

Figure S32. UV-Visible spectral changes of **5** for reversibility and reusability tests with F^- ions using L-ascorbic acid (left) and their corresponding colorimetric response (right).


Figure S33. The "writing–erasing" cycle of 3 and 5.


Figure S34. Repeated memory cycles using **1A** (left) and **1B** (right) in which one state was detected by the absorbance for porphyrin and other state by the absorbance for porphodimethene in CH_2Cl_2 for Cu-TDtBHPP-MN (1). Photographs showed the colour of each state under 'naked-eye'.

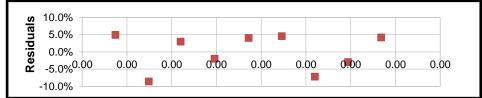
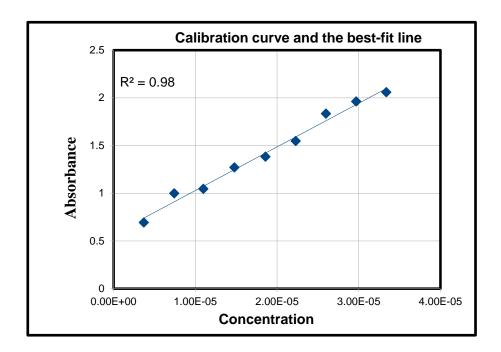


Figure S35. Repeated memory cycles using **1A** (left) and **1B** (right) in which one state was detected by the absorbance for porphyrin and other state by the absorbance for porphodimethene in CH_2Cl_2 for Ni-TDtBHPP-MN (2). Photographs showed the colour of each state under 'naked-eye'.

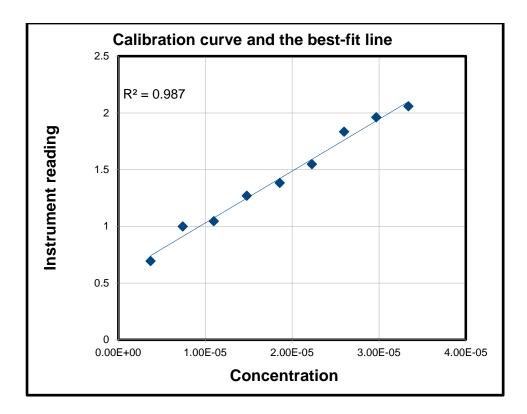
Figure S36. (a) Electronic absorbance and (b) fluorescence emission intensity changes upon addition of 10 equivalents of different tetra-*n*-butylammonium salts into CH_2Cl_2 solution of **3**.

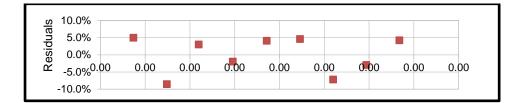


Standard deviation of the residuals = 7.4%

	Value	Error (σ)	% Error
Slope	1123.9013	58.9624	5.25%
Intercept	0.0626	0.0157	25.16%

Figure S37. Analytical calibration curve using a simple liner curve fit, with error estimation of Cu-TDtBHPP-MN (1) for fluoride addition.

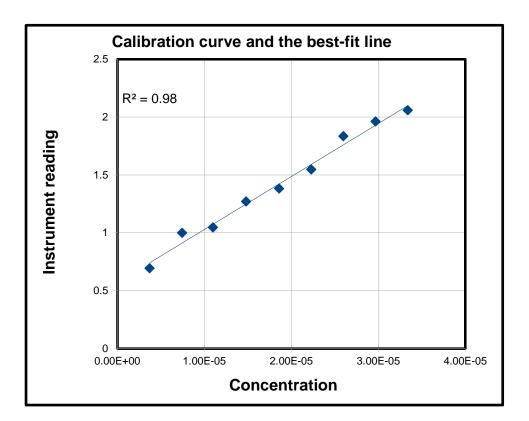


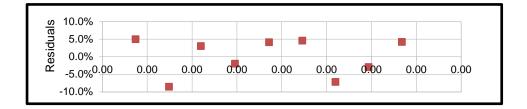


Standard deviation of the residuals = 6.7%

	Value	Error (σ)	% Error
Slope	66352.4460	3134.4887	4.72%
Intercept	0.3526	0.0655	18.57%

Figure S38. Analytical calibration curve using a simple liner curve fit, with error estimation of Cu-TDtBHPP-MN (1) for cyanide addition.





Standard deviation of the residuals = 4.8%

	Value	Error (σ)	% Error
Slope	45748.3802	1974.8304	4.32%
Intercept	0.5720	0.0412	7.21%

Figure S39. Analytical calibration curve using a simple liner curve fit, with error estimation of H_2 -TDtBHPP-MN (3) for cyanide addition.

Standard deviation of the residuals = 13.5%

	Value	Error (σ)	% Error
Slope	2882.8421	178.9241	6.21%
Intercept	0.0257	0.0143	55.42%

Figure S40. Analytical calibration curve using a simple liner curve fit, with error estimation of H_2 -TDtBHPP-MN (3) for fluoride addition.

compound	HOMO+1 (eV)	HOMO (eV)	LUMO (eV)	LUMO+1 (eV)	HOMO-LUMO gap (eV)
H ₂ -TDtBHPP	-5.932	-4.838	-2.285	-2.236	2.553
H ₂ -TDtBHPP- MN(3)	-5.708	-5.1209	-3.019	-2.563	2.1019
$\frac{H_2-TDtBHPP}{MN+CN^{-}(5)}$	-3.2106	-1.977	-0.595	-0.565	1.382
$\frac{H_2-TDtBHPP-}{MN+F^{-}(4.F^{-})}$	-1.665	-1.521	0.467	0.558	1.988
H_2 -TDtBHPP- MN+ F ⁻ + H_2O Wash (4)	-6.153	-5.865	-3.909	-3.555	1.956

Table S4. B3LYP/LANL2DZ calculated parameters for the investigated porphyrin and porphyrinogens for **3**.

Table S5. B3LYP/LANL2DZ calculated parameters for the investigated porphyrin and porphodimethene for **2**.

compound	HOMO+1 (eV)	HOMO (eV)	LUMO (eV)	LUMO+1 (eV)	HOMO-LUMO gap (eV)
Ni-TDtBHPP- CHO	-5.427	-5.029	-2.534	-2.309	2.495
Ni-TDtBHPP- MN(2)	-5.614	-5.225	-2.952	-2.467	2.273
Ni-TDtBHPP-MN + CN ⁻	-3.292	-1.852	-0.4291	-0.3782	1.423
Ni-TDtBHPP-MN + F ⁻	-6.026	-5.235	-4.227	-3.3217	1.008

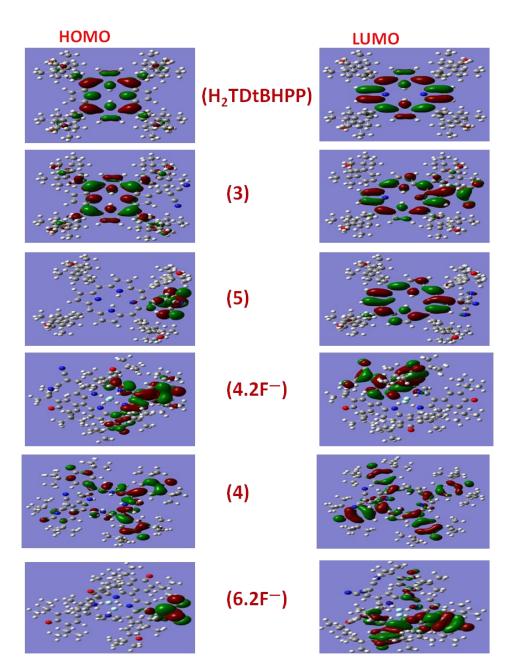


Figure S41. Coefficients of the first HOMO and the first LUMO for the optimized H_{2} -TDtBHPP, 3, 5, 4.2F⁻, 4 and 6.2F⁻.

Memory element		λ_{max}	λ_{max}	λ_{max}
INPUT 1	INPUT 2	423 nm	462 nm	785 nm
(CN)	(F)			
0	0	"0"	"1"	"0"
1	0	"1"	"0"	"0"
0	1	"0"	"0"	"1"
1	1	"0"	"0"	"1"

Table S6. Tunable two-input/multi-output system for **1** using CN^{-} and F^{-} as inputs.

Table S7. Tunable two-input/multi-output system for 2 using CN^- and F^- as inputs.

Memory element		λ_{max}	λ_{max}	λ_{max}
INPUT 1	INPUT 2	426 nm	462 nm	532 nm
(CN)	(F ⁻)			
0	0	"0"	"1"	"0"
1	0	"1"	"0"	"0"
0	1	"0"	"0"	"1"
1	1	"0"	"0"	"1"