Supplementary Information

Synthesis and Characterization of Metal-Rich Phosphonium

Polyelectrolytes and Their Use as Precursors to Nanomaterials

Amir Rabiee Kenaree and Joe B. Gilroy*

Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research

(CAMBR), The University of Western Ontario, 1151 Richmond St. N., London, Ontario,

Canada, N6A 5B7. Tel: +1-519-661-2111 ext. 81561; E-mail: joe.gilroy@uwo.ca.

Table of Contents

NMR spectra	S2
GPC data	S12
UV-vis absorption spectra	S13
Cyclic voltammograms	S15
Differential scanning calorimetry thermograms	S16
Element maps	S17
Scanning electron microscopy and energy-dispersive X-ray spectroscopy results	S20
Powder X-ray diffractograms	
References	

NMR spectra

Fig. S1 ¹H NMR spectrum of **6a** in DMSO- d_6 . The asterisks denote residual solvent signals.

Fig. S2 ¹³C{¹H}MR spectrum of **6a** in DMSO- d_6 . The asterisk denotes the solvent signal.

Fig. S3 ¹H NMR spectrum of **6b** in DMSO- d_6 . The asterisks denote residual solvent signal.

Fig. S4 ¹³C{¹H} NMR spectrum of **6b** in DMSO- d_6 . The asterisk denotes the solvent signal.

Fig. S5 ¹H NMR spectrum of 6c in DMSO- d_6 . The asterisks denote residual solvent signals.

Fig. S6 ¹³C{¹H} NMR spectrum of **6c** in DMSO- d_6 . The asterisk denotes the solvent signal.

Fig. S7 ¹H NMR spectra of **6d** in DMSO- d_6 . The asterisks denote residual solvent signals.

Fig. S8 ¹³C{¹H} NMR spectrum of **6d** in DMSO- d_6 . The asterisk denotes the solvent signal.

Fig. S9 ¹H NMR spectrum of 7a in DMSO- d_6 . The asterisks denote the solvent signals.

Fig. S10 ¹³C{¹H} NMR spectrum of **7a** in DMSO- d_6 . The asterisk denotes the solvent signal.

Fig. S11 ¹H NMR spectrum of **7b** in DMSO- d_6 . The asterisks denote the solvent signals.

Fig. S12 ¹³C{¹H} NMR spectrum of **7b** in DMSO- d_6 . The asterisk denotes the solvent signal.

Fig. S13 ¹H NMR spectrum of **7c** in DMSO- d_6 . The asterisks denote the solvent signals.

Fig. S14 ¹³C{¹H} NMR spectrum of **7c** in DMSO- d_6 . The quaternary carbon of the triflate anion was not detected. However, the purity of **7c** was confirmed by other methods such as ¹⁹F NMR and elemental analysis. The asterisk denotes the solvent signal.

Fig. S15 ¹H NMR spectrum of 7d in DMSO- d_6 . The asterisks denote the solvent signals.

Fig. S16 ¹³C{¹H} NMR spectrum of **7d** in DMSO- d_6 . The asterisk denotes the solvent signal.

Fig. S17 ¹H NMR spectra of **8a** recorded at different temperatures in DMSO- d_6 . The asterisks denote residual solvents signals and grease. Note – the residual water signal shifts upfield as temperature increases.

Fig. S18 ¹H NMR spectrum of **8b** recorded in DMSO- d_6 at 125 °C. The asterisks denote residual solvents signals and grease.

Fig. S19 ¹H NMR spectrum of **8c** recorded in DMSO- d_6 at 125 °C. The asterisks denote residual solvents signals and grease.

Fig. S20 ¹H NMR spectrum of **8d** recorded in DMSO- d_6 at 125 °C. The asterisks denote residual solvents signals and grease.

GPC data

-	injection	Max RI Response (mL)	$\mathbf{M}_{\mathbf{n}}\left(\mathbf{D}\mathbf{a}\right)$	$\mathbf{M}_{\mathbf{w}}$ (Da)	M_w/M_n
	1	12.91	45,850	148,250	3.23
	2	12.91	46,300	147,100	3.18
0	3	12.92	48,500	148,750	3.07
8a	Average	12.91	46,900	148,000	3.16
	Std. Dev.	0.00	1,162	699	0.069
	%RSD	0.04%	2.48%	0.47%	2.19%
	1	12.77	44,000	176,800	4.02
	2	12.77	46,150	183,550	3.98
0L	3	12.77	45,150	194,400	4.31
80	Average	12.77	45,100	184,900	4.10
	Std. Dev.	0.00	887	7,262	0.147
	%RSD	0.02%	1.97%	3.93%	3.60%
	1	12.64	68,100	256,850	3.77
	2	12.61	69,350	284,700	4.10
0	3	12.60	69,850	292,750	4.19
80	Average	12.61	69,100	278,100	4.02
	Std. Dev.	0.02	751	15,389	0.18
	%RSD	0.12%	1.09%	5.53%	4.48%
	1	13.16	37,250	137,300	3.68
	2	13.15	40,100	146,000	3.64
6.9	3	13.15	38,650	147,150	3.81
ou	Average	13.15	38,650	143,450	3.71
	Std. Dev.	0.00	1,150	4,398	0.07
	%RSD	0.04%	2.97%	3.07%	1.89%

Table S1 Conventional calibration GPC data for polyelectrolytes 8a-d.

Fig. S21 GPC traces of polyelectrolytes **8a** ($3 \times Fc$, black), **8b** ($2 \times Fc$, $1 \times Rc$; red), **8c** ($1 \times Fc$, $2 \times Rc$; blue), and **8d** ($3 \times Rc$, green) recorded using a 60 °C DMF solution containing 0.02 M [*n*-Bu₄N][OTf].

UV-vis absorption spectra

Fig. S22 UV-vis absorption spectra recorded for **6a** ($3 \times Fc$; black), **6b** ($2 \times Fc$, $1 \times Rc$; red), **6c** ($1 \times Fc$, $2 \times Rc$; blue) and **6d** ($3 \times Rc$; green) in THF.

Fig. S23 UV-vis absorption spectra recorded for **7a** ($3 \times Fc$; black), **7b** ($2 \times Fc$, $1 \times Rc$; red), **7c** ($1 \times Fc$, $2 \times Rc$; blue) and **7d** ($3 \times Rc$; green) in THF.

Fig. S24 UV-vis absorption spectra recorded for **8a** ($3 \times Fc$; black), **8b** ($2 \times Fc$, $1 \times Rc$; red), **8c** ($1 \times Fc$, $2 \times Rc$; blue) and **8d** ($3 \times Rc$; green) in THF.

Cyclic voltammograms

Fig. S25 Cyclic voltammograms of monomers **7a** (3 × Fc; black), **7b** (2 × Fc, 1 × Rc; red), **7c** (1 × Fc, 2 × Rc; blue), and **7d** (3 × Rc; green) recorded at 250 mV s⁻¹ in solutions of 2/1 CH₂Cl₂/MeCN containing 0.1 M [*n*-Bu₄N][OTf] as supporting electrolyte.

Fig. S26 Cyclic voltammograms of polyelectrolytes: **8a** ($3 \times Fc$, black), **8b** ($2 \times Fc$, $1 \times Rc$; red), **8c** ($1 \times Fc$, $2 \times Rc$; blue), and **8d** ($3 \times Rc$, green) recorded at 250 mV s⁻¹ in solutions of 2/1 CH₂Cl₂/MeCN containing 0.1 M [*n*-Bu₄N][OTf] as supporting electrolyte. Note – due to the limited and different solubilities of the polyelectrolytes in the solvent/electrolyte mixture, the intensities of the waves in the recorded cyclic voltamogramms were lower compared to that of the corresponding monomers and also a clear trend was not observed when their cyclic voltamogramms were compared. Furthermore, due to low concentration and extreme broadening, the irreversible oxidation wave of ruthenocene for **8b** was not observed.

Differential scanning calorimetry thermograms

Fig. S27 DSC thermograms of polyelectrolytes **8a** (3 × Fc, black), **8b** (2 × Fc, 1 × Rc; red), **8c** (1 × Fc, 2 × Rc; blue), and **8d** (3 × Rc, green) recorded at a scan rate of 10 °C min⁻¹.

Scanning electron microscopy and energy-dispersive X-ray spectroscopy results

Scale bar = 10 µm

Element maps

Fig. S29 SEM image and elemental maps (C, O, Si, P, Fe) for the nanomaterials prepared via the pyrolysis of a film of polyelectrolyte **8a**. Scale bar = 1 μ m.

Fig. S30 SEM image and elemental maps (C, O, Ru, P, Fe, Si) for the nanomaterials prepared via the pyrolysis of a film of polyelectrolyte **8c**. Scale bar = 1 μ m.

Fig. S31 SEM image and elemental maps (C, O, Ru, P, Si) for the nanomaterials prepared via the pyrolysis of a film of polyelectrolyte **8d**. Scale bar = 350 nm.

Scanning electron microscopy and energy-dispersive X-ray spectroscopy results

%	С	0	Р	Fe
	20.6	18.6	21.3	39.4
	25.1	25.4	17.1	32.5
Bulk	25.3	28.8	16.3	29.5
	23.9	21.3	19.8	34.9
	20.2	29.2	14.3	36.4
Average	23.0 ± 2.5	24.7 ± 4.6	17.7 ± 2.8	34.6 ± 3.8
	36.9	27.1	11.1	24.9
	33.7	25.8	10.4	30.1
	46.3	26.9	8.2	18.6
Dantialan	78.1	20.0	0.5	1.4
Particles	79.5	18.6	0.7	1.3
	80.4	17.9	0.5	1.1
	48.6	33.0	7.5	10.9
	52.4	30.0	7.3	10.3
Average	57.0 ± 19.5	24.9 ± 5.5	5.8 ± 4.5	12.3 ± 11.2

^{*a*}Data normalized to exclude silicon detected from substrate.

Fig. S32 (a) Representative SEM image illustrating the areas analyzed to determine the elemental composition of dense regions of relatively large particles (*bulk*) and less dense regions of relatively small particles (*particles*) produced via the pyrolysis of a film of polyelectrolyte **8a**. (b) Data table summarizing the elemental composition of multiple areas of the silicon wafer determined using EDX spectroscopy. Scale bar = 5 μ m.

%	С	0	Р	Fe	Ru
	14.1	25.9	16.3	26.8	16.9
	3.8	20.9	10.7	38.4	26.2
	10.9	44.7	11.8	23.6	8.9
	14.0	24.4	16.0	28.6	17.0
	13.2	27.3	16.2	26.1	17.1
Bulk	13.9	26.2	18.8	21.9	19.3
	16.6	25.4	18.8	20.5	18.7
	14.9	28.5	18.5	19.6	18.5
	13.2	27.4	19.4	20.5	19.4
	13.9	25.6	16.0	27.6	16.9
	12.3	26.6	15.9	28.5	16.8
Average	12.8 ± 3.3	27.5 ± 6.0	16.2 ± 2.8	25.6 ± 5.4	17.8 ± 4.0
Particles	16.2	30.7	14.9	24.0	14.2
	38.6	36.6	8.6	8.3	8.0
	26.7	34.2	12.1	16.5	10.4
	15.5	42.4	12.1	22.1	7.8
	21.2	28.6	14.3	22.3	13.7
Average	236 + 95	345 + 54	124 ± 25	187 ± 64	108 ± 30

^aData normalized to exclude silicon detected from substrate.

Fig. S33 (a) Representative SEM image illustrating the areas analyzed to determine the elemental composition of dense regions of relatively large particles (*bulk*) and less dense regions of relatively small particles (*particles*) produced via the pyrolysis of a film of polyelectrolyte **8b**. (b) Data table summarizing the elemental composition of multiple areas of the silicon wafer determined using EDX spectroscopy. Scale bar = $5 \mu m$.

%	С	0	Р	Fe	Ru
	14.5	44.2	12.9	6.7	21.6
	14.6	46.5	12.0	6.6	20.2
	13.2	42.9	13.6	7.4	22.9
Bulk	13.7	42.0	13.7	7.3	23.3
	28.9	16.3	18.4	8.0	28.5
	22.1	14.9	20.3	9.6	33.2
	31.9	20.0	16.0	6.9	25.2
Average	19.8 ± 7.8	$\textbf{32.4} \pm \textbf{14.5}$	15.3 ± 3.1	7.5 ± 1.0	$\textbf{25.0} \pm \textbf{4.5}$
	16.0	48.9	9.4	6.6	19.1
Particles	13.5	54.2	6.9	7.9	17.5
	70.6	19.5	2.8	1.6	5.4
	74.2	15.4	3.1	1.6	5.7
	64.7	26.1	2.6	1.5	5.0
	63.1	10.9	10.4	3.1	12.5
	62.8	11.6	9.8	3.3	12.6
Average	52.1 ± 25.9	26.6 ± 17.8	6.4 ± 3.5	3.7 ± 2.6	11.1 + 5.9

^{*a*}Data normalized to exclude silicon detected from substrate.

Fig. S34 (a) Representative SEM image illustrating the areas analyzed to determine the elemental composition of dense regions of relatively large particles (*bulk*) and less dense regions of relatively small particles (*particles*) produced via the pyrolysis of a film of polyelectrolyte **8c**. (b) Data table summarizing the elemental composition of multiple areas of the silicon wafer determined using EDX spectroscopy. Scale bar = 5 μ m.

% ^{<i>a</i>}	С	0	Р	Ru
	16.1	5.2	25.5	53.1
	17.8	5.2	25.1	51.9
Bulk	17.6	5.1	25.0	52.3
	18.3	5.0	25.0	51.7
	20.9	6.1	23.9	49.1
Average	18.1 ± 1.8	5.3 ± 0.4	24.9 ± 0.6	51.6 ± 1.5
	71.4	20.6	3.2	4.8
	76.0	16.4	3.1	4.6
Particles	69.7	18.9	4.6	6.8
	72.1	15.4	5.1	7.4
	74.2	19.6	2.3	4.0
Average	72.7 ± 2.4	182+22	36 + 12	55 + 15

[']Data normalized to exclude silicon detected from substrate.

Fig. S35 (a) Representative SEM image illustrating the areas analyzed to determine the elemental composition of dense regions of relatively large particles (*bulk*) and less dense regions of relatively small particles (*particles*) produced via the pyrolysis of a film of polyelectrolyte **8d**. (b) Data table summarizing the elemental composition of multiple areas of the silicon wafer determined using EDX spectroscopy. Scale bar = 5 μ m.

Powder X-ray diffractograms

Fig. S36 Powder X-ray diffractogram of the nanomaterials prepared via pyrolysis of a film of **8a** plotted vs. iron phosphides and iron.¹

Fig. S37 Powder X-ray diffractogram of the nanomaterials prepared via pyrolysis of a film of **8b** plotted vs. iron phosphides, iron, ruthenium phosphides and ruthenium.¹

Fig. S38 Powder X-ray diffractogram of the nanomaterials prepared via pyrolysis of a film of **8c** plotted vs. iron phosphides, iron, ruthenium phosphides and ruthenium.¹

Fig. S39 Powder X-ray diffractogram of the nanomaterials prepared via pyrolysis of a film of **8d** plotted vs. ruthenium phosphides and ruthenium.¹

References

1 The PXRD patterns were compared using the ICSD database and PDF4+ software.