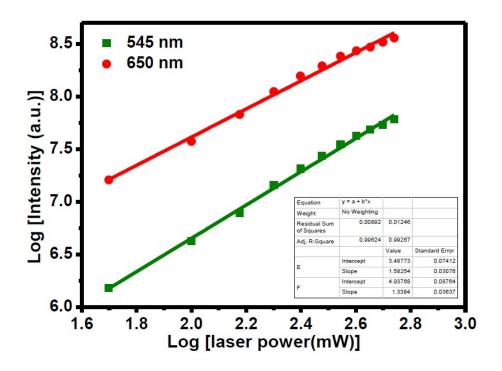
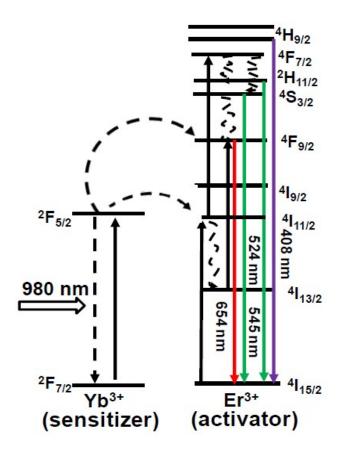

Supporting Information


Near-infrared light triggered superior photocatalytic activity from MoS₂-NaYF₄:Yb³⁺/Er³⁺ nanocomposites

Manjunath Chatti^{a,} Venkata N. K. B. Adusumalli^a Sagar Ganguli^a and Venkataramanan Mahalingam, *^a


^a Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal 741246, India.

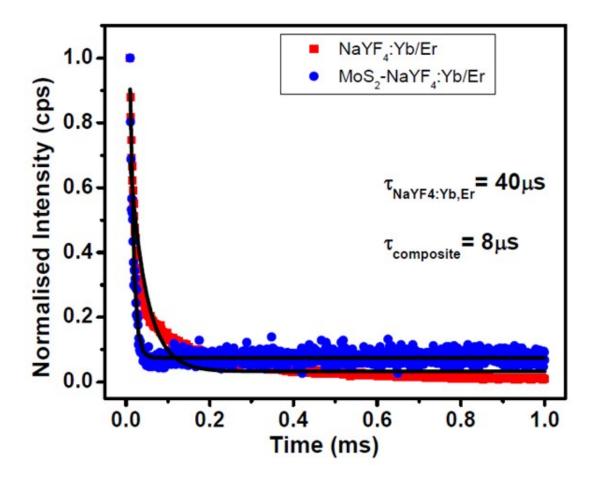

Figure S1 FTIR spectra of (a) free adipic acid (AA) molecules, AA tailored (b) NaYF₄:Yb³⁺/Er³⁺ nanocrystals and (c) MoS₂-NaYF₄:Yb³⁺/Er³⁺ composites.

Figure S2 The logarithmic plots of upconversion emission intensity versus the laser power of $Yb^{3+}(20\%)/Er^{3+}(2\%)$ -doped NaYF₄ nanocrystals under 980 nm excitation.

Figure S3 Energy transfer mechanism between Yb³⁺ and Er³⁺ via the upconversion processes.

Figure S4 Lifetime decay curves of $Yb^{3+}(20\%)/Er^{3+}(2\%)$ -doped NaYF₄ nanocrystals (red) and MoS₂-NaYF₄: Yb^{3+}/Er^{3+} composites (blue).

Table 1. Comparison of photocatalytic performance of various upconversion photocatalysts

Composite	Synthesis Method	Dye (Concentration) and % of degradation	Time taken in hours	Reference
YF ₃ :Yb/Tm/TiO ₂ core/shell nanoparticles	Hydrothermal followed by hydrolysis	Methylene Blue (15 mg/L), 61 %	30	Chem. comm., 2010, 46, 2304-2306
NaYF ₄ :Yb/Tm@TiO ₂ coreshell nanoparticles	Hydrothermal followed by hydrolysis	Methylene Blue (15 mg/L), 65 %	14	ACS Catalysis, 2013, 3, 405- 412
NaYF ₄ :Yb/Tm@ZnO composite	Two step-high temperature thermolysis	Rhodamine B (20 mg/L) 65 %	30	PCCP, 15, 2014, 14681- 14688
BiVO ₄ /CaF ₂ :Er/Tm/Yb	Hydrothermal followed by room temperature stirring	Methyl Orange (10 mg/L), 10 %	6	Nanoscale, 2014, 6, 1362- 1368
NaYF ₄ :Yb,Tm/CdS/TiO ₂	Stirring followed by heating at 160°C for 3 hours	Methylene Blue (15 mg/L), ~95 %	50	Dalton Trans. 2014, 43, 1048-1054
NaYF ₄ :Yb ³⁺ ,Tm ³⁺ /g-C ₃ N ₄	Calcination at 250°C	Methylene Blue (15 mg/L), 83 %	6	J. Colloid Inter face Sci., 2015, 460, 264-272
MoS ₂ -NaYF ₄ :Yb/Er	Hydrothermal	Rhodamine B (25 mg/L), 61 %	12	Present work