Electronic Supplementary Information (ESI)

Synthesis and isolation of non-chromophore cagerearranged silsesquioxanes from base-catalyzed reactions

Sasikarn Hanprasit, Nuttanee Tungkijanansin, Arisa Prompawilai, Supattra Eangpayung, and Vuthichai Ervithayasuporn*

Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Center for Catalysis, Center for Inorganic and Materials Chemistry, and Center of Intelligent Materials and Systems, Nanotec Center of Excellence, Faculty of Science, Mahidol University, Rama VI road, Ratchathewi, Bangkok 10400, Thailand.

Corresponding Author: V. Ervithayasuporn

*Email: vuthichai.erv@mahidol.ac.th

EXPERIMENTAL SECTION

Materials

Octakis(3-chloropropyl)octasilsesquioxane (1) was prepared according to a literature report.^{5d} 2nitrophenol (purity; 98%), 3-nitrophenol (purity; 99%), and anhydrous N, N-dimethyl formamide were purchased from Sigma Aldrich, used without additional purification, while the commercial grade of hexane, ethyl acetate, and methylene chloride was further distilled. Precoated silica gel 60 F_{254} plates and silica gel (No. 60) used for chromatography were purchased from Merck & Co., Inc.

Instrumentation

Fourier transform nuclear magnetic resonance spectra were obtained by using a Bruker-AscendTM 400 high-resolution magnetic resonance spectrometer for ¹H (400 MHz), ¹³C{¹H} (100 MHz) and ²⁹Si{¹H} (79 MHz) nuclei. Chemical shifts were reported in δ units (parts per million) relative to tetramethylsilane (TMS) and residual solvents peaks were used as a reference. High-resolution mass spectrometery was performed with a VQ-TOF 2 Micromass spectrometer.

General procedure to prepare sodium o-nitrophenolate and m-nitrophenolate salts.

Either 2-nitrophenol or 3-nitrophenol was dissolved in a sodium hydroxide solution (1 M) at a molar ratio of 1:1. Then, the solution mixture was stirred at room temperature for 1 hour until becoming a clear solution. Evaporation of water gave derivatives of nitrophenolate sodium salts. Then, the solid salts were further dried under a vacuum for an overnight, while being heated at 70°C to complete a perfect dryness.

Synthesis of octakis(3-propyl-*o*-oxynitrobenzene)octasilsesquioxane (2), decakis(3-propyl-*o*-oxynitrobenzene)decasilsesquioxane (3), and dodecakis(3-propyl-*o*-oxynitrobenzene)dodecasilsesquioxane (4).

In a 50 ml of dried round bottom flask, sodium o-nitrophenolate salt (4.23 g, 26.2 mmol) was further dried for 5 hours under vacuum while being heated at 70°C. Then, dried compound 1 (2.00 g, 1.93 mmol) was added, followed by the addition of dried DMF (15 mL) into the solid mixture. Then, the reaction solution was heated to 100°C for 1 day. The reaction was then stopped by cooling down in an ice bath. In order to remove soluble inorganic salts, 150 ml of cold CH₂Cl₂ and 50 ml of cold deionized water were added into the reaction mixture, becoming a two-phase solution between organic and aqueous layers. The aqueous layer was extracted by 50 mL of CH₂Cl₂ for three times. After that, combined organic layers were washed with 50 ml of cold deionized water and saturated NaHCO₃ solution for three times. Then, it was further washed with cold deionized water until the organic phase changed color from orange to light yellow in order to completely remove an excess of 2-nitrophenol. Anhydrous sodium sulfate was added into the organic solution resulting in a clear yellow solution, followed by a filtration. Evaporation of organic solvent gave a yellow sticky crude product (3.48 g). Finally, the crude product was purified by silica gel column chromatography (100% CH_2Cl_2 to obtain three major products at R_f at 0.38, 0.30 and 0.24, identified as T_8 , T_{10} , and T_{12} products, respectively. Compound 2 (T_8 , 0.2993 g, 0.1612 mmol, 5% yield),¹H NMR (CDCl₃): δ 0.82 (m, 2H), 1.93 (m, 2H), 4.06 (t, 2H, J_(H-H) = 6.28 Hz), 6.94 (m, 1H), 7.07 (d, 1H, $J_{(H-H)} = 8.04$ Hz), 7.46 (m, 1H), 7.77 (dd, 1H, $J_{(H-H)} = 3.24$ Hz). ¹³C{¹H} NMR (CDCl₃): δ 152.46, 139.86, 134.10, 125.46, 119.94, 114.52, 71.05, 22.61, 7.92 ppm. ²⁹Si{¹H} NMR (CDCl₃): δ -66.70 ppm. HRMS (ESI): [M+Na]⁺ calcd for [C₇₂H₈₀N₈O₃₆Si₈Na]⁺, *m/z* 1879.2727; found, *m/z* 1879.2657. Compound **3** (T₁₀, 0.6422 g, 0.2768 mmol, 18% yield),¹H NMR (CDCl₃): δ 0.82 (m, 2H), 1.93 (m, 2H), 4.06 (t, 2H, J_(H-H) = 6.28 Hz), 6.94 (m, 1H), 7.07 (d, 1H, $J_{(H-H)} = 8.08$ Hz), 7.46 (m, 1H), 7.77 (dd, 1H, $J_{(H-H)} = 3.24$ Hz). ¹³C{¹H} NMR (CDCl₃): δ 152.83, 140.11, 134.43, 125.71, 120.17, 114.93, 71.48, 23.14, 8.90 ppm. ²⁹Si{¹H} NMR (CDCl₃): δ -68.41 ppm. HRMS (ESI): [M+Na]⁺ calcd for [C₉₀H₁₀₀N₁₀O₄₅Si₁₀Na]⁺, m/z 2343.3434; found, *m/z* 2343.3255. Compound 4 (T₁₂, 0.1285 g, 0.04616 mmol, 4% yield) ¹H NMR (CDCl₃): δ 0.84 (m, 2H), 1.93 (m, 2H), 4.06 (t, 2H, $J_{(H-H)} = 6.10$ Hz), 6.99 (t, 1H, $J_{(H-H)} = 7.70$ Hz), 7.08 (d, 1H, $J_{(H-H)} = 8.40 \text{ Hz}$, 7.45 (m, 1H), 7.74 (dd, 1H, $J_{(H-H)} = 3.11 \text{ Hz}$). ¹³C{¹H} NMR (CDCl₃): δ 152.90, 140.03, 134.46, 125.68, 120.09, 115.02, 71.61, 23.34, 9.52, 8.94 ppm. ²⁹Si{¹H} NMR (CDCl₃): δ

-67.98, -70.75 ppm. HRMS (ESI): [M+Na]⁺ calcd for [C₁₀₈H₁₂₀N₁₂O₅₄Si₁₂Na]⁺, *m/z* 2808.4175; found, *m/z* 2808.4170.

Synthesis of octakis(3-propyl-*m*-oxynitrobenzene)octasilsesquioxane (5), decakis(3-propyl*m*-oxynitrobenzene)decasilsesquioxane (6), and dodecakis(3-propyl-*m*oxynitrobenzene)dodecasilsesquioxane (7).

To complete a perfect dryness of sodium salt, *m*-nitrophenolate sodium salt was further dried under a vacuum at 70 °C for 5 hours until the orange solids of the salt hydrate to dried red powder. Then, dried compound 1 (2.00 g; 1.93 mmol) and sodium *m*-nitrophenol salt (3.73 g, 23.1 mmol) were added into 50 mL of dried round bottom flask, dried under vacuum at room temperature for an additional hour. Anhydrous N,N-dimethyl formamide (DMF) (15 mL) was added into the solid mixture. After heating at 70°C for 24 hours, the reaction mixture was cooled down in an ice-bath, followed by the addition of cold CH₂Cl₂(150 mL) and deionized water (50 mL) to extract products in organic layer out from aqueous layer. The aqueous layer was further extracted by 50 mL of CH₂Cl₂ (3 times). The combined organic layers were further washed with saturated NaHCO₃ and washed with water in the final. The organic solution was dried by anhydrous sodium sulfate. Then, evaporation of organic layer gave the yellow sticky crude product (3.07g), and analyzed by thinlayer chromatography (TLC) with 10% of hexane in CH₂Cl₂. The result showed three separate spots at $R_{\rm f} = 0.35$, 0.25 and 0.14, identified as T₈, T₁₀, and T₁₂ products, respectively. Compound **5** (T₈, 0.11 g, 0.0592mmol, 3%yield), ¹H NMR (CDCl₃): δ 0.82 (t, 2H, J_(H-H) = 3.09 Hz), 1.92 (m, 2H), 3.96 (t, 2H, $J_{(H-H)} = 6.44$ Hz), 7.16 (dd, 1H, $J_{(H-H)} = 3.37$ Hz), 7.37 (t, 1H, $J_{(H-H)} = 8.22$ Hz), 7.63 (t, 1H, $J_{(H-H)} = 2.14$ Hz), 7.74 (dd, 1H, $J_{(H-H)} = 3.09$ Hz). ¹³C{¹H} NMR (CDCl₃): δ 159.38, 149.14, 129.97, 121.61, 115.70, 108.39, 70.01, 22.54, 8.09 ppm. ²⁹Si{¹H} NMR (CDCl₃): δ -66.70 ppm. HRMS (ESI): $[M+Na]^+$ calcd for $[C_{72}H_{80}N_8O_{36}Si_8Na]^+$, m/z 1879.2727; found, m/z1879.2875. Compound 6 (T₁₀, 0.42 g, 0.1808 mmol, 12% yield), ¹H NMR (CDCl₃): δ 0.82 (t, 2H, $J_{(H-H)} = 8.20 \text{ Hz}$, 1.92 (m, 2H), 3.95 (t, 2H, $J_{(H-H)} = 6.42 \text{ Hz}$), 7.15 (dd, 1H, $J_{(H-H)} = 3.39 \text{ Hz}$), 7.36 (t, 1H, $J_{(H-H)} = 8.22$ Hz), 7.62 (t, 1H, $J_{(H-H)} = 2.22$ Hz), 7.74 (dd, 1H, $J_{(H-H)} = 3.15$ Hz). ¹³C{¹H} NMR (CDCl₃): δ 159.60, 149.32, 130.20, 121.78, 115.86, 108.68, 70.36, 22.99, 8.96 ppm. ²⁹Si{¹H} NMR (CDCl₃): δ -68.53 ppm. HRMS (ESI): [M+Na]⁺ calcd for [C₉₀H₁₀₀N₁₀O₄₅Si₁₀Na]⁺, m/z 2343.3434; found, m/z 2343.3512. Compound 9 (T₁₂, 0.26 g, 0.0933 mmol, 7% yield), ¹H

NMR (CDCl₃): δ 0.86 (t, 2H, J_(H-H) = 8.24 Hz), 1.95 (m, 2H), 3.95 (t, 2H, J_(H-H) = 4.18 Hz), 7.13 (dd, 1H, J_(H-H) = 8.24 Hz), 7.31 (t, 1H, J_(H-H) = 8.16 Hz), 7.58 (t, 1H, J_(H-H) = 2.06 Hz), 7.68 (dd, 1H, J_(H-H) = 3.12 Hz). ¹³C{¹H} NMR (CDCl₃): δ 159.60, 149.38, 130.29, 121.74, 116.00, 108.74, 70.47, 23.26, 9.58, 9.01 ppm. ²⁹Si{¹H} NMR (CDCl₃): δ -68.21, -70.90 ppm. HRMS (ESI): [M+Na]⁺ calcd for [C₁₀₈H₁₂₀N₁₂O₅₄Si₁₂Na]⁺, *m/z* 2808.4175; found, *m/z* 2808.4812

General procedure to prepare cage-rearranged silses quioxanes (T_8 , T_{10} , and T_{12}) under basecatalyzed reaction at different reaction times.

In each reaction cycle, compound 1, 1.00 g, 0.96 mmol) and K₂CO₃ (0.0625 g, 0.45 mmol) were added into dried two-neck round bottom flask equipped with condenser and magnetic stirring bar. The solid mixture was dried under vacuum for 1 hour. Then, anhydrous DMF (10 ml) was added to the solid mixture. Then, the reaction mixture was heated at 60°C under dried nitrogen to vary reaction times for 15 mins, 30 mins, 1 hr, 2 hrs, 4 hrs, 8 hrs, 16 hrs, and 24 hrs. Isolated yields of each product were determined using conventional liquid chromatography as shown in Figure S1. To work up, the solution mixture was then extracted using CH_2Cl_2 (3 x 50 mL). The organic phase was collected and extracted further using H₂O (3 x 100 mL). The organic layer was dried by anhydrous sodium sulfate and evaporated to obtain pale white viscous liquid. The crude product was purified by silica gel column chromatography (30% CH₂Cl₂/Hexane) to obtain three major products at $R_{\rm f}$ at 0.41, 0.35 and 0.28, identified as octakis(3-chloropropyl)octasilsesquioxane (1), decakis(3-chloropropyl)decasilsesquioxane (8) and dodecakis(3chloropropyl)dodecasilsesquioxane (9), respectively. Compound 1, ¹H NMR (CDCl₃): δ 0.79 (m, 2H), 1.86 (m, 2H), 3.53 (t, 2H, $J_{(H-H)} = 6.58$ Hz). ¹³C{¹H} NMR (CDCl₃): δ 9.34, 26.25, 47.02 ppm. ²⁹Si{¹H} NMR (CDCl₃): δ -67.07 ppm. HRMS (ESI): [M+Na]⁺ calcd for [C₂₄H₄₈Cl₈NaO₁₂Si₈]⁺, *m/z* 1058.8647; found, *m/z* 1058.8539. Compound **8**, ¹H NMR (CDCl₃): δ 0.79 (m, 2H), 1.86 (m, 2H), 3.53 (t, 2H, $J_{(H-H)} = 6.52$ Hz). ¹³C{¹H} NMR (CDCl₃): δ 9.34, 26.25, 47.02 ppm. ²⁹Si{¹H} NMR (CDCl₃): δ -68.94 ppm. HRMS (ESI): [M+Na]⁺ calcd for [C₃₁H₆₂Cl₁₀NaO₁₄Si₁₀]⁺, *m/z* 1316.8527; found, *m/z* 1316.8177. Compound 9, ¹H NMR (CDCl₃): $\delta 0.77 (m, 2H), 1.85 (m, 2H), 3.54 (t, 2H, J_{(H-H)} = 6.58 Hz).$ ¹³C{¹H} NMR (CDCl₃): $\delta 10.00, 10.49, 10.49, 10.41$ 26.50, 26.60, 47.15, 47.21 ppm. ²⁹Si{¹H} NMR (CDCl₃): δ -68.68, -71.34 ppm. HRMS (ESI): $[M+Na]^+$ calcd for $[C_{36}H_{72}Cl_{12}NaO_{18}Si_{12}]^+$, *m/z* 1576.8021; found, *m/z* 1576.8498.

Figure S1: Weight percentages of compounds $\mathbf{1}$ (T₈), $\mathbf{8}$ (T₁₀), and $\mathbf{9}$ (T₁₂) with time for basecatalyzed reactions. Isolated yields determined using conventional liquid chromatography.

Figure S2: ¹H-NMR (400 MHz) of octakis(3-chloropropyl)octasilsesquioxane (1) in CDCl₃

Figure S3: ${}^{13}C{}^{1}H$ NMR (100 MHz) of octakis(3-chloropropyl)octasilsesquioxane (1) in $CDCl_3$

Figure S4: ²⁹Si{¹H} NMR (79 MHz) of octakis(3-chloropropyl)octasilsesquioxane (1) in CDCl₃

Inter 80	00-					1058.	8539	+MS, 0.	, 0.3min #(16)			
60	00-											
40	00-											
201												
20		-			_		1					
	0 600	700	800	90	0 1	000	1100	1200	1300	1400	1500	· · · · m/
	m/r		1.94	R/N		Bee						
-	412 2749	22020	100.0	2500 7	0.0558	7406						
-	414 2780	33330	23.8	830.7	0.0555	7502						
3	415 2801	1142	3.4	116.8	0.0552	7517						
4	441 3049	2303	7 1	227 1	0.0573	7703						
5	442 3106	704	21	66.4	0.0591	7488						
6	661 5338	618	1.8	42.6	0.0867	7628						
7	685 4359	6653	19.6	459 7	0.0781	8774						
8	685 4361	2736	8.1	188.5	0.0791	8678						
9	687.4465	667	2.0	45.4	0.0799	8606						
10	1054.8594	1542	4.5	122.7	0.1213	8695						
11	1055.8595	989	2.9	78.4	0.1105	9556						
12	1056.8577	5395	15.9	430.1	0.1108	9537						
13	1057.8592	3119	9.2	248.2	0.1109	9539						
14	1058.8539	7753	22.8	617.4	0.1191	8893						
16	1059.8524	4484	13.2	356.5	0.1025	10339						
16	1060.8523	6516	19.2	517.9	0.1143	9281						
17	1061.8530	3122	9.2	247.6	0.1177	9024						
18	1062.8502	3069	9.0	243.2	0.1199	8862						
19	1063.8494	1488	4.4	117.5	0.1175	9055						
20	1064.8487	1179	3.5	92.9	0.1157	9205						
21	1278.8590	633	1.9	47.8	0.1224	10449						
22	1280.8601	2128	6.3	162.1	0.1423	9002						
23	1281.8601	1720	5.1	130.9	0.1320	9711						
24	1282.8568	4363	12.9	333.0	0.1245	10300						
25	1283.8569	2878	8.5	219.5	0.1199	10709						
26	1284.8562	4326	12.7	330.2	0.1199	10719						
27	1285.8553	2502	7.4	190.7	0.1364	9429						
28	1286.8564	2638	7.8	201.2	0.1274	10097						
29	1287.8529	1387	4.1	105.5	0.1437	8960						
4.63	1 JRH 86(17)	7742		36.8	70711	60003						

Figure S5: HRMS (ESI) of octakis(3-chloropropyl)octasilsesquioxane (1)

Figure S6: ¹H NMR (400 MHz) of decakis(3-chloropropyl)decasilsesquioxane (8) in CDCl₃

Figure S7: ¹³C{¹H} NMR (100 MHz) of decakis(3-chloropropyl)decasilsesquioxane (8) in CDCl₃

Figure S8: ²⁹Si{¹H} NMR (79 MHz) of decakis(3-chloropropyl)decasilsesquioxane (8) in CDCl₃

Figure S9: HRMS (ESI) of decakis(3-chloropropyl)decasilsesquioxane (8)

Figure S10: ¹H NMR (400 MHz) of dodecakis(3-chloropropyl)dodecasilsesquioxane (9) in CDCl₃

Figure S11: ¹³C{¹H} NMR (100 MHz) of dodecakis(3-chloropropyl)dodecasilsesquioxane (9) in CDCl₃

Figure S12: ²⁹Si{¹H} NMR (79 MHz) of dodecakis(3-chloropropyl)dodecasilsesquioxane (9) in CDCl₃

Figure S13: HRMS (ESI) of dodecakis(3-chloropropyl)dodecasilsesquioxane (9)

oxynitrobenzene)octasilsesquioxane (2) in CDCl₃

Figure S16: ²⁹Si{¹H} NMR (79 MHz) of octakis(3-propyl-*o*-oxynitrobenzene)octasilsesquioxane (**2**) in CDCl₃

Figure S17: HRMS (ESI) of octakis(3-propyl-*o*-oxynitrobenzene)octasilsesquioxane (2)

Figure S18: ¹H NMR (400 MHz) of decakis(3-propyl-*o*-oxynitrobenzene)decasilsesquioxane (3) in CDCl₃

oxynitrobenzene)decasilsesquioxane (3) in CDCl₃

Figure S20: ²⁹Si{¹H} NMR (79 MHz) of decakis(3-propyl-*o*-oxynitrobenzene)decasilsesquioxane (**3**) in CDCl₃

Figure S21: HRMS (ESI) of decakis(3-propyl-o-oxynitrobenzene)decasilsesquioxane (3)

Figure S23: ¹³C{¹H} NMR (100 MHz) of dodecakis(3-propyl-*o*-oxynitrobenzene)dodecasilsesquioxane (4) in CDCl₃

Figure S24: ²⁹Si{¹H} NMR (79 MHz) of dodecakis(3-propyl-*o*-oxynitrobenzene)dodecasilsesquioxane (4) in CDCl₃

Inte	ns						+MS. 1 8min #(105)
x1	104						
1.	25 ·						-2809.4035
1.	00						
0.	75						
0.	50 7	62.1739	. 11	18 581	6 144	13 ₁ 1473	2339.0727
0.	25 1.1.1.1	لمدانا ال	الله الله	bul	Abilit	1.10	la hale da al hale da
	500	750	1000		1250	1600	1750 2000 2250 2500 2750
					12.50		1130 2000 2230 2300 2150 1102
	11		1252-115	52-520-525			
-	m/z		- 1%	S/N	FWHM	Res.	
1	144 9766	3901	30.8	6.5	0.0099	14684	
2	145 0537	3957	31.2	6.6	0.0138	10478	
3	214.18/4	3923	31.0	7.0	0.0100	21394	· · · · · · · · · · · · · · · · · · ·
-	290 8507	4528	35.8	8.9	0.0124	23951	
	290 9030	3931	31.0	1.1	0.0346	85/1	
	473.9412	4012	31.7	8.3	0.0161	294/5	
	502 6029	4127	32.0	20	0.0165	30488	
	696 4263	3942	31.1	1.9	0.0184	33651	
10	762 1720	4497	34.1		0.1089	97007	
11	012 1739	2002	31 6	7.0	0.0205	44601	
12	1119 6916	4016	31.3		0 0205	49746	
13	1443 1473	4303	34.0		0 0229	41627	
14	1864 0689	3081	31.4	70	0.0307	61429	
15	1864 3262	4102	32.4		0.0410	45451	
16	2215 2641	3083	31.4	76	0.0326	68046	
17	2339 0727	5293	41.8	10.5	0 0332	70556	
18	2339 2598	4619	36.5	91	0.0609	38427	
19	2807 4203	6783	53.6	14.2	0 4925	5700	
20	2808 4170	10499	82.9	22.2	0 4962	5659	
21	2809 4035	12665	100.0	26.9	0 5346	5256	
22	2810 4032	10651	84.1	22 6	0 5131	5477	
23	2811 3926	7671	60 6	16.1	0 5204	5403	
24	2812 4056	4692	37.0	9.7	0.5559	5059	
25	2824 3580	4631	36.6	96	0 5021	5625	•
26	2825 3764	5560	439	11.6	0 5122	5516	
27	2826 3724	5052	39.9	10.5	0.5037	5611	
28	2827 3720	4039	31.9	8.3	0.4549	6216	
29	2937 8228	4240	33.5	87	0.0387	75894	
30	2938 0295	3985	31.5	8.2	0.0418	70213	

Figure S25: HRMS (ESI) of dodecakis(3-propyl-o-oxynitrobenzene)dodecasilsesquioxane (4)

Figure S26: ¹H-NMR (400 MHz) of octakis(3-propyl-*m*-oxynitrobenzene)octasilsesquioxane (5) in CDCl₃

Figure S27: ¹³C{¹H} NMR (100 MHz) of octakis(3-propyl-*m*-oxynitrobenzene)octasilsesquioxane (**5**) in CDCl₃

Figure S28: ²⁹Si{¹H} NMR (79 MHz) of octakis(3-propyl-*m*-oxynitrobenzene)octasilsesquioxane (**5**) in CDCl₃

Inte	ns.										+MS, 1	.0-1.0min	#(65-66)
x1	04						1880	2873					
	.1											•	
	1												-
	_												
	2												
	.1												
	41												
	Ч.,		1254.140	7				1.	2172 0031		27	40 9106	
	لاسلس	hilli	tim idially u	Sall and	Interes	mund	uluuu	Indudat	LUGHULLU	Lable Liebblad	الأربيها باللاما	suburshile	uuuu
	1000		1200	1400		1600	1800	2000	2200	2400	2600	2800	m/z
#		m/z	T.	1%	S/N	FWHM	Res.						
1	1087.89	915	4273	93	4.1	0.0492	22131						
2	1098.49	913	4642	10.2	4.5	0.0292	37669						
3	1120.11	109	4328	9.5	4.0	0.0299	37482						
- 4	1163.92	252	4311	9.4	3.8	0.0345	33705						
5	1220.06	530	4631	10.1	4.0	0.0644	18950						
6	1254.14	107	4674	10.2	4.0	0.0304	41281						
7	1324.01	157	4183	9.2	3.5	0.0316	41963						
8	1609.47	781	4268	9.3	4.3	0.0784	20534						
9	1701.69	929	4267	9.3	4.4	0.0382	44513						
10	1769.39	086	4446	9.7	4.7	0.1251	14147						
11	1/82.90	5/2	4151	9.1	4.4	0.0403	44281						*
12	10//.2/	98	60007	13.3	0.8	0.2961	6340						
14	1077.70	07	6932	13.2	1.9	0.2040	7090						
16	1979 79	100	4864	10.6	6.0	0.2750	6491						
16	1879 28	175	37468	82.0	46.4	0.2035	6257						
17	1880 28	73	45716	100.0	56.7	0 2977	6316						
18	1881.28	374	39683	86.8	492	0 2960	6356						
19	1882.29	01	24358	53.3	29.9	0.3054	6163						
20	1883.29	56	13914	30.4	16.7	0.2880	6539						
21	1884.29	12	6362	13.9	7.2	0.3079	6120						
22	1894.18	16	4477	98	4.9	0.0368	51454						
23	1895.27	63	4787	10.5	5.2	0.2878	6586						
24	1896.26	34	5186	11.3	5.7	0.3015	6289						
25	1897.25	519	4898	10.7	5.4	0.3400	5580						
26	1953.31	50	4511	9.9	5.0	0.3321	5882						
27	1954.31	24	6027	13.2	69	0.3081	6343						
28	1955.30	70	6491	14.2	7.5	0.2788	7013						
29	1956.31	65	4138	9.1	4.5	0.3041	6432						
30	2749.81	06	4188	9.2	4.6	0.0498	55201						

Figure S29: HRMS (ESI) of octakis(3-propyl-*m*-oxynitrobenzene)octasilsesquioxane (5)

Figure S30: ¹H NMR (400 MHz) of decakis(3-propyl-*m*-oxynitrobenzene)decasilsesquioxane (6) in CDCl₃

Figure S31: ¹³C{¹H} NMR (100 MHz) of decakis(3-propyl-*m*-oxynitrobenzene)decasilsesquioxane (6) in CDCl₃

Figure S32: ²⁹Si{¹H} NMR (79 MHz) of decakis(3-propyl-*m*-oxynitrobenzene)decasilsesquioxane (**6**) in CDCl₃

Figure S33: HRMS (ESI) of decakis(3-propyl-*m*-oxynitrobenzene)decasilsesquioxane (6)

Figure S35: ¹³C{¹H} NMR (100 MHz) of dodecakis(3-propyl-*m*-oxynitrobenzene)dodecasilsesquioxane (7) in CDCl₃

Figure S37: HRMS (ESI) of dodecakis(3-propyl-*m*-oxynitrobenzene)dodecasilsesquioxane (7)