Supporting Information

Bimetallic salen aluminum complexes: cooperation between reactive centers in the ring-opening polymerization of lactide and epoxides.

Florence Isnard,^{*a*} Marina Lamberti,^{*b*} Luana Lettieri,^{*a*} Ilaria D'auria,^{*a*} Konstantin Press, ^{*c*} Rubina Troiano, ^{*a*} Mina Mazzeo ^{*a*,*}

Department of Chemistry and Biology,"A. Zambelli" University of Salerno. I-84084, Giovanni

Paolo II, 132 Fisciano, Salerno, Italy.

Table of contents

Experimental Section. Synthesis of the ligand precursors L ₁ -L ₃	S2-3
Figure S1. ¹ H NMR of complex 1 in C_6D_6	S3
Figure S2. ¹ H NMR of complex 1 in CDCl ₃	S4
Figure S3. ¹ H NMR of complex 2 in C_6D_6	S4
Figure S4. ¹ H NMR of complex 3 in C_6D_6	S5
Figure S5. ¹ H NMR of complex 4 in C ₆ D ₆	S5
Figure S6. ¹ H NMR of the propagating species after the addition of 5 equivalents of LA	S6
Figure S7. ¹ H NMR of the propagating species by 1 after the addition of 10 equivalents of LA	S7
Figure S8 ¹ H- ¹ H COSY of the propagating species (600 MHz, C ₆ D ₆ , 298 K).	S8
Figure S9 ¹ H- ¹ H COSY of the propagating species (600 MHz, C ₆ D ₆ , 298 K).	S8
Figure S10 ¹ H- ¹ H NOESY of the propagating species (600 MHz, C ₆ D ₆ , 298 K)	S9
Figure S11 ¹ H NMR of the propagating species by 3 and 2	S9
Figure S12 ¹ H NMR of the propagating species by 2 at 70°C	S10
Table S1. Tetrad probabilities based on Bernoullian Statistic and experimental values	S10
Figure S13 Pseudofirst-order kinetic plot for ROP of LA promoted by 3 at 373 K.	S11
Figure S14 ¹ Linear relationship between M_n and the initial mole ratio [CHO] ₀ /[I] ₀	S11
Figure S15 MALDI-TOF spectrum of oligomers of PCHO	S12
Figure S16 ¹ H NMR spectrum (400 MHz, CDCl ₃ , 298 K) of PCHO	S12

Synthesis of the ligand precursor (L1): A solution of 1,3-propanediamine (0.28 gram, 3.78 mmol) in methanol (20 mL) was added to a solution of 3,5-di-tert-butylsalicylaldehyde (1.77 gram, 7.56 mmol) in methanol (20 mL) and the reaction mixture was stirred at room temperature until a yellow solid precipitated. The solid was collected by filtration, washed with cold methanol and dried yielding the ligand precursor quantitatively.

¹H NMR (CDCl₃, 400 MHz): δ = 8.39 (s, 1H, NCH), 7.38 (d, 1H, *J* = 2.0 Hz, ArH), 7.09 (d, 1H, *J* = 2.0 Hz, ArH), 3.70 (t, 2H, *J* = 6.4 Hz, CH₂), 2.12 (t, 1H, *J* = 6.4 Hz, CH₂), 1.45 (s, 9H, CH₃), 1.30 (s, 9H, CH₃).

¹³C NMR (CDCl₃, 100.67 MHz): δ = 167.2 (CN), 158.8 (CO), 140.8 (C), 137.4 (C), 127.6 (CH), 126.5 (CH), 118.5 (C), 57.4 (NCH₂), 35.7 (CH₂), 34.8 (C), 32.4 (C), 32.2 (CH₃), 30.1 (CH₃).

Synthesis of the ligand precursor (L2): was synthesized quantitatively as on yellow solid in analogy to $\text{Lig}^{n=3}\text{H}_2$ by reacting 1,5-pentanediamine (0.31 gram, 3.04 mmol) and 3,5-di-tert-butylsalicylaldehyde (1.42 gram, 6.08 mmol).

¹H NMR (CDCl₃, 400 MHz): $\delta = 8.34$ (s, 1H, NCH), 7.37 (d, 1H, J = 2.4 Hz, ArH), 7.08 (d, 1H, J = 2.4 Hz, ArH), 3.58 (t, 2H, J = 6.8 Hz, CH₂), 1.75 (m, 2H, CH₂), 1.49 (m, 1H, CH₂), 1.44 (s, 9H, CH₃), 1.30 (s, 9H, CH₃).

¹³C NMR (CDCl₃, 100.67 MHz): δ = 165.8 (CN), 158.3 (CO), 139.9 (C), 136.7 (C), 126.7 (CH), 125.8 (CH), 117.9 (C), 59.5 (NCH₂), 35.1 (CH₂), 34.2 (C), 31.6 (CH₃), 30.8 (C), 29.5 (CH₃), 24.9 (CH₂).

Synthesis of the ligand precursor (L3): was synthesized quantitatively as on yellow solid in analogy to $Lig^{n=3}H_2$ by reacting 1,12-dodecanediamine (0.79 gram, 3.95 mmol) and 3,5-di-tert-butylsalicylaldehyde (1.84 gram, 7.90 mmol).

¹H NMR (CDCl₃, 400 MHz): $\delta = 8.32$ (s, 1H, NCH), 7.36 (d, 1H, J = 2.3 Hz, ArH), 7.07 (d, 1H, J = 2.3 Hz, ArH), 3.55 (t, 2H, J = 6.9 Hz, CH₂), 1.68 (m, 2H, CH₂), 1.44 (s, 9H, CH₃), 1.34 (m, 2H, CH₂), 1.30 (s, 9H, CH₃), 1.27 (m, 6H, CH₂).

¹³C NMR (CDCl₃, 100.67 MHz): δ = 165.5 (CN), 158.4 (CO), 139.9 (C), 136.7 (C), 126.7 (CH), 125.7 (CH), 118.0 (C), 59.6 (NCH₂), 35.1 (CH₂), 34.2 (C), 31.6 (CH₃), 31.0 (C), 29.7 (CH₂), 29.6 (CH₂), 29.5 (CH₃), 29.4 (CH₂), 27.2 (CH₂).

Figure S1.¹H NMR of complex 1 (600 MHz, C₆D₆, 298 K).

Figure S2.¹H NMR of complex 1 (400 MHz, CDCl₃, 298 K).

Figure S3.¹H NMR of complex **2** (250 MHz, C₆D₆, 298 K).

Figure S4.¹H NMR of complex 3 (300 MHz, C₆D₆, 298 K).

Figure S5. ¹H NMR spectrum of complex 4 (400 MHz, C₆D₆, 298 K).

Figure S6. ¹H NMR spectrum of the propagating species after the addition of 5 equivalents of LA (600 MHz, C_6D_6 , 298 K).

Figure S7. ¹H NMR spectrum of the propagating species after the addition of 10 equivalents of LA (600 MHz, C_6D_6 , 298 K).

Figure S8. ¹H-¹H COSY of the propagating species formed by complex 1 (600 MHz, C₆D₆, 298 K).

Figure S9. ¹H-¹H COSY of the propagating species formed by complex 1 (600 MHz, C_6D_6 , 298 K).

Figure S10. ¹H-¹H NOESY of the propagating species (600 MHz, C₆D₆, 298 K).

Figure S11. ¹H NMR spectra of the propagating species formed by complexes **2** (black) and **3** (red) after the addition of 4 equivalents of ⁱPrOH and 10 equivalents of LA (300 MHz, C_6D_6 , 298 K).

Figure S12. ¹H NMR spectrum of the propagating species formed by complex 2 at 70 °C (300 MHz, C_6D_6 , 343 K).

Table S1. Tetrad probabilities based on Bernoullian Statistic (Th) for a P_m of 0.82 and experimental values (Exp) as obtained by NMR analysis of PLA sample obtained by 1.

Tetrad	Formula	Exp	Th
[mmm]	$P_m^2 + P_r P_m/2$	0.75	0.75
[mmr]	$P_r P_m/2$	0.08	0.07
[<i>rmm</i>]	$P_r P_m/2$	0.07	0.07
[rmr]	$P_r^{2/2}$	0.02	0.02
[mrm]	$(P_r^2 + P_r P_m)/2$	0.08	0.09

Figure S13. Kinetic plot for ROP of *rac*-LA promoted by **3**. The concentrations were determined by ¹H NMR spectroscopy, $[LA]_0$ is the initial concentration of *rac*-LA and $[LA]_t$ the concentration at time *t*. The pseudofirst-order rate constant $k_{app}=0.111$ h⁻¹ R = 0.9975. Reaction conditions: **[3]**= 0.01M; [LA]/[3] = 100; T=373 K; toluene-d₈ as solvent.

Figure S14. Linear relationship between M_n and the initial mole ratio [CHO]₀/[I]₀

Figure S15. MALDI-TOF spectrum of oligomers of PCHO obtained in run 6 of Table 2

Figure S16. ¹H NMR (400 MHz, C₆D₆, 298 K) of PCHO obtained in run 6 of Table 2