<Electronic Supplementary Information>

Recyclable scavengers for photo-cyclopropanation via in situ crystallization

process

Haeri Lee, Eunkyung Choi, Tae Hwan Noh and Ok-Sang Jung*

Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National

University, Busan 46241, Korea.

*e-mail: oksjung@pusan.ac.kr

Refinement details of structures with the SQUEEZE routine in PLATON.

For $1(Cl)_6$, $2 \cdot (NO_3)_6$, and $3 \cdot (NO_3)_6$, solvate molecules in the voids were highly disordered. For $2 \cdot (I_3)_3 \cdot (NO_3)_3$, solvate molecules and anions were highly disordered in a large volume. Those were impossible to refine using conventional discrete-atom models. The residual electron density was treated as diffuse contributions using the SQUEEZE of the PLATON software and located a series of voids (see below).¹

For $1(Cl)_6$

_refine_special_details

The structure contains large solvent accessible voids. SQUEEZE procedure has been used in order to remove electronic density peaks from solvent molecules. According to the TGA and proton NMR spectra, the asymmetric unit of $1(Cl)_6$ may contains two methanol molecules.

1.20

loop_

```
platon squeeze void nr
_platon_squeeze_void_average_x
platon squeeze void average y
platon squeeze void average z
_platon_squeeze_void_volume
platon squeeze void count electrons
 _platon_squeeze_void content
 1 0.333 0.667 0.020
                         317
                                120''
 2 0.667 0.333 0.187
                                120''
                         326
 3 0.000 0.000 0.354
                                119''
                         323
 4 0.333 0.667 0.520
                                120''
                         318
 5 0.667 0.333 0.687
                                120''
                         326
 6 0.000 0.000 0.854
                         323
                                119''
platon squeeze void probe radius
platon squeeze details
                                    ?
```

For $2 \cdot (NO_3)_6$,

_refine_special_details

The structure contains large solvent accessible voids. According to the TGA and proton NMR spectra, the asymmetric unit of $2 \cdot (NO_3)_6$ contains about five dimethyl sulfoxide and six water molecules. Except refined five dimethyl sulfoxide, SQUEEZE procedure has been used in order to remove electronic density peaks from disordered solvent molecules.

loop_

platon squeeze void nr platon squeeze void average x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume platon squeeze void count electrons platon squeeze void content 1 0.000 0.431 0.250 699 266'' 2 0.000 0.569 0.750 701 266 ' ' 3 0.500 0.069 0.750 701 266 ' ' 4 0.500 0.931 0.250 699 266'' _platon_squeeze_void_probe_radius 1.20 ? platon squeeze details

For $2 \cdot (I_3)_3 \cdot (NO_3)_3$,

_refine_special_details

According to EDX and HR-ESI-MS data, the CCDC-1453026 crystals consist of $2 \cdot (I_3)_3 \cdot (NO_3)_3$ composition. Whereas all three triiodide anions were fully refined, three nitrate anions were highly disordered on account of crystal's low stability during X-ray data collection. Additionally, the structure contains large solvent accessible voids. SQUEEZE procedure has been used in order to remove electronic density peaks. According to the TGA and proton NMR spectra, the asymmetric unit of $2 \cdot (I_3)_3 \cdot (NO_3)_3$ may contains five chloroform molecules.

loop_

_platon_squeeze_void_nr						
_platon_squeeze_void_average_x						
_platon_squeeze_void_ave	rage_y					
_platon_squeeze_void_ave	rage_z					
_platon_squeeze_void_volu	ume					
_platon_squeeze_void_cou	nt_elec	etrons				
_platon_squeeze_void_con	tent					
1 0.000 0.000 -0.010 2	2243	928 ' '				
2 0.750 0.250 0.000	344	110''				
3 0.509 0.500 0.014 2	243	928 ' '				
4 1.250 0.750 0.000	344	110''				
5 0.028 0.142 0.183	7	0''				
6 0.528 0.642 0.183	7	0''				
7 0.944 0.294 0.217	6	1''				
8 0.444 0.794 0.217	6	1''				
9 0.056 0.294 0.283	6	1''				
10 0.556 0.794 0.283	6	1''				
11 0.972 0.142 0.317	7	0''				
12 0.472 0.642 0.317	7	0''				
13 0.250 0.250 0.500	344	110''				
14 0.750 0.750 0.500	344	110''				
15 0.528 0.358 0.683	7	0''				
16 0.028 0.858 0.683	7	0''				
17 0.444 0.206 0.717	6	1''				
18 0.944 0.706 0.717	6	1''				
19 0.556 0.206 0.783	6	1''				
20 0.056 0.706 0.783	6	1''				
21 0.472 0.358 0.817	7	0''				
22 0.972 0.858 0.817	7	0''				
_platon_squeeze_void_probe_radius						
_platon_squeeze_details ?						

For $\mathbf{3} \cdot (NO_3)_6$,

1.20

_refine_special_details

The structure contains large solvent accessible voids. According to the TGA and proton NMR spectra, the asymmetric unit of $3 \cdot (NO_3)_6$ contains about twelve dimethyl sulfoxide and four water molecules. Except refined six dimethyl sulfoxide, SQUEEZE procedure has been used in order to remove electronic density peaks from disordered solvent molecules.

loop_

_platon_squeeze_void_nr

_platon_squeeze_void_average_x

 $_platon_squeeze_void_average_y$

 $_platon_squeeze_void_average_z$

_platon_squeeze_void_volume

_platon_squeeze_void_count_electrons

_platon_squeeze_void_content

1 0.528 0.250 -0.008	2502	870''	
2 1.000 0.500 0.000	323	86''	
3 0.472 0.750 0.006	2501	869 ' '	
4 0.404 -0.002 0.049	11	0''	
5 1.000 1.000 0.500	323	86''	
6 0.596 0.498 0.451	11	1''	
7 0.404 0.502 0.549	11	0''	
8 0.596 0.002 0.951	11	1''	
_platon_squeeze_void_pr	obe_radi	us	1.20
_platon_squeeze_details		?	

References

1. A. L. Spek, Acta Cryst., 2015, C71, 9-18.

Table S1 Crystal data and refinement parameters for $1(Cl)_6$, $1(NO_3)_6$, $2 \cdot (NO_3)$,

	1 (Cl) ₆	1 (NO ₃) ₆	$2 \cdot (NO_3)_6$	$2 \cdot (I_3)_3 \cdot (NO_3)_3$	$3 \cdot (\mathrm{NO}_3)_6$	$4 \cdot (NO_3)_6$
Formula	$C_{66}H_{78}Cl_6N_6O_{18}Pd_3\\$	$C_{66}H_{72}N_{12}O_{33}Pd_3S_3$	$C_{146}H_{204}N_{18}O_{64}Pd_3S_{10}\\$	C136H130Cl30I9N15O33Pd3	$C_{138}H_{200}N_{30}O_{52}Pd_3S_{12} \\$	$C_{111}H_{187.42}N_{36}O_{63.71}Pd_3\\$
$M_{ m w}$	1775.24	1976.73	3875.06	5027.34	3815.19	3364.94
Crystal system	Trigonal	Trigonal	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	R3c	R3c	C2/c	C2/c	$P2_{1}/c$	$P2_{1}/c$
a (Å)	24.927(2)	25.4354(4)	21.8830(7)	14.029(3)	18.3794(5)	16.3485(2)
<i>b</i> (Å)			36.7927(7)	41.786(8)	72.214(3)	27.8059(3)
<i>c</i> (Å)	19.707(3)	21.3755(6)	24.3223(6)	37.004(6)	15.4212(5)	33.4695(4)
β (°)			105.571(2)	94.315(9)	110.993(2)	96.134(1)
$V(Å^3)$	10604(2)	11976.3(5)	18864.0(9)	21631(7)	19117(1)	15127.6(3)
Ζ	6	6	4	4	4	4
ρ (g cm ⁻³)	1.668	1.644	1.364	1.544	1.326	1.477
$\mu ({\rm mm^{-1}})$	1.056	0.841	0.480	1.960	0.491	0.456
$R_{\rm int}$	0.1789	0.0687	0.0468	0.1051	0.0758	0.0569
GoF on F^2	1.050	1.036	1.083	1.036	1.029	1.014
$R_1 [I > 2\sigma(I)]^{[a]}$	0.0891	0.0595	0.0644	0.1314	0.1288	0.0785
wR_2 (all data) ^[b]	0.1644	0.1672	0.1974	0.4415	0.3732	0.2596
Completeness (%)	100.0	100.0	100.0	99.9	74.8	100.0

 $\boldsymbol{2}{\cdot}(I_3)_3{\cdot}(NO_3)_3,\,\boldsymbol{3}{\cdot}(NO_3)_6,\,and\,\boldsymbol{4}{\cdot}(NO_3)_6.$

 $\overline{{}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|, {}^{b}wR_{2} = (\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})^{2}])^{1/2}$

 $\textbf{Table S2} \text{ Selected bond length and angles of } 1(\text{Cl})_6, 1(\text{NO}_3)_6, 2 \cdot (\text{NO}_3), 2 \cdot (\text{I}_3)_3 \cdot (\text{NO}_3)_3, \\$

$3 \cdot (NO_3)_{6}$	and $4 \cdot (NO_3)_{6}$.	
(5)0)	(5)0	

1 (Cl) ₆		1(NO ₃)	6	$2 \cdot (NO_3)_6$		$2 \cdot (I_3)_3 \cdot (NO_3)_3$	
Pd(1)-N(1)	1.99(1)	Pd(1)-N(1)	2.031(9)	Pd(1)-N(1)	2.045(4)	Pd(1)–N(1)	2.07(1)
Pd(1)–N(2)	2.03(1)	Pd(1)-N(2)	2.02(1)	Pd(1)–N(4)	2.016(4)	Pd(1)-N(3)#2	2.07(1)
Pd(1)-Cl(1)	2.282(5)	Pd(1)-O(5)	1.99(1)	Pd(1)-N(3)#1	2.041(4)	Pd(1)-N(4)	2.00(1)
Pd(1)-Cl(2)	2.314(5)	Pd(1)-O(8)	2.02(1)	Pd(1)-N(6)#1	2.024(4)	Pd(1)-N(6)#2	2.08(1)
				Pd(2)-N(2)	2.044(3)	Pd(2)-N(2)	2.00(2)
				Pd(2)-N(2)#1	2.044(3)	Pd(2)-N(5)	2.03(2)
				Pd(2)-N(5)	2.034(3)		
N(1)-Pd(1)-N(2)	176.4(6)	N(1) - Pd(1) - N(2)	178.4(3)	Pd(2)-N(5)#1	2.034(3)	N(1)-Pd(1)-N(3)#2	173.6(4)
N(1)-Pd(1)-Cl(1)	87.0(4)	N(1) - Pd(1) - O(5)	86.8(5)			N(1)-Pd(1)-N(4)	90.4(4)
N(1)-Pd(1)-Cl(2)	90.5(4)	N(1) - Pd(1) - O(8)	89.9(4)	N(1)-Pd(1)-N(4)	87.9(2)	N(1)-Pd(1)-N(6)#2	90.1(5)
N(2)-Pd(1)-Cl(1)	93.6(4)	N(2) - Pd(1) - O(5)	92.7(4)	N(1)-Pd(1)-N(3)#1	173.0(1)	N(3)#2-Pd(1)-N(6)#2	92.1(5)
N(2)-Pd(1)-Cl(2)	171.7(2)	N(2) - Pd(1) - O(8)	90.6(4)	N(1)-Pd(1)-N(6)#1	94.0(2)	N(4)-Pd(1)-N(6)#2	175.4(5)
	(O(5)-Pd(1)-O(8)	176.7(5)	N(3)#1-Pd(1)-N(6)#1	87.9(2)	N(2)-Pd(2)-N(2)#2	175.8(8)
				N(2)-Pd(2)-N(5)	86.9(1)	N(2)-Pd(2)-N(5)	91.8(7)
				N(5)-Pd(2)-N(5)#1	174.5(2)	N(2)#2-Pd(2)-N(5)	88.1(7)
3 ·(NO	2)6	4	$(NO_3)_6$				
Pd(1)=N(1)	2.01(1) $Pd(1) = N(1)$	(- 5)0	2.027(5)			
Pd(1) - N(4)	2.06(1) $Pd(1)-N(4)$		2.001(5)			
Pd(1) - N(7)	2.031(9) $Pd(1)-N(13)$		2.020(5)			
Pd(1)–N(16)	2.04(1) Pd(1)–N(22)		2.023(5)			
Pd(2)–N(2)	2.01(1) Pd(2)– N(2)		2.033(5)			
Pd(2)–N(5)	2.02(1) Pd(2)–N(10)		2.009(5)			
Pd(2)-N(10)	2.01(1) Pd(2)–N(16)		2.019(5)			
Pd(2)–N(19)	1.99(1) Pd(2)–N(25)		2.013(5)			
Pd(3)-N(3)	2.02(1) Pd(3)–N(3)		2.032(5)			
Pd(3)–N(6)	2.08(1) Pd(3)–N(7)		2.011(6)			
Pd(3)-N(13)	1.96(1) Pd(3)–N(19)		1.999(6)			
Pd(3)-N(22)	1.99(1) Pd(3)–N(28)		2.009(6)			
N(1)-Pd(1)-N(4)	175.5(4) N(1)-Pd(1)-N	J(4)	176.8(2)			
N(1)-Pd(1)-N(7)	88.7(4) N(1)-Pd(1)-N	N(13)	89.5(2)			
N(4)-Pd(1)-N(7)	91.4(4) N(1)-Pd(1)-N	N(22)	92.3(2)			
N(7)-Pd(1)-N(16)	178.3(3) N(4)-Pd(1)-N	N(13)	90.8(2)			
N(2)-Pd(2)-N(5)	173.1(5) N(13)–Pd(1)–	N(22)	177.1(2)			
N(5)-Pd(2)-N(10)	91.9(5) N(2)-Pd(2)-N	N(10)	175.6(2)			
N(5)-Pd(2)-N(19)	86.5(5) N(2)-Pd(2)-N	N(16)	91.8(2)			
N(10)-Pd(2)-N(19)	177.5(5) N(2)-Pd(2)-N	N(25)	89.1(2)			
N(3)-Pd(3)-N(6)	176.2(5) N(10)-Pd(2)-	N(16)	90.9(2)			
N(3)-Pd(3)-N(13)	88.9(5) N(16)-Pd(2)-	N(25)	178.5(2)			
N(6)-Pd(3)-N(13)	89.5(5) N(3)-Pd(3)-N	J(7)	178.6(2)			
N(13)-Pd(3)-N(22)	177.5(6) N(3)-Pd(3)-N	N(19)	89.4(2)			
		N(3)-Pd(3)-N	N(28)	91.6(2)			
		N(7)-Pd(3)-N	N(19)	91.9(3)			
		N(19)-Pd(3)-	N(28)	175.7(3)			
#1	. 1 /2						

-x,y,-z+3/2; #2 -x+1,y,-z+1/2

Fig. S1 High resolution-ESI-TOF-mass data of $2 \cdot (NO_3)_6$ (a), $3 \cdot (NO_3)_6$ (b), and $4 \cdot (NO_3)_6$ (c). Insets show the magnified data of calculated (red) and experimental mass peaks (black) corresponding to $[2 \cdot (NO_3)_6 - 2NO_3^{--}]^{2+}$, $[3 \cdot (NO_3)_6 - 2NO_3^{--}]^{2+}$, and $[4 \cdot (NO_3)_6 - 2NO_3^{--}]^{2+}$, respectively.

Fig. S2 ORTEP drawing of $2 \cdot (NO_3)_6$ showing thermal ellipsoids at 50 % probability (a), proton assignment (b), ¹H NMR (c), and ¹H-¹H COSY NMR spectra (d) of $2 \cdot (NO_3)_2$ in Me₂SO-*d*₆ (*, HOD; dagger, Me₂SO and CHD₂CD₃SO).

Fig. S3 Proton assignment (a), ¹H NMR (b), and ¹H-¹H COSY NMR (c) spectra of $\mathbf{3} \cdot (NO_3)_2$ in Me₂SO-*d*₆ (*, HOD; dagger, Me₂SO and CHD₂CD₃SO).

Fig. S4 Proton assignment (a), ¹H NMR (b), and ¹H-¹H COSY NMR (c) spectra of $4 \cdot (NO_3)_2$ in Me₂SO-*d*₆ (*, HOD; dagger, Me₂SO and CHD₂CD₃SO).

Fig. S5 Top (left) and side (right) views of packing structures of 2-layered tripalladium(II)cyclophanes, $1(Cl)_6$ (a), and $1(NO_3)_6$ (b). Anions, hydrogen atoms, and solvate molecules were omitted for clarity.

Fig. S6 The coordination geometry of palladium(II) center in the tripalladium(II)cyclophane molecules, $1(Cl)_6$ (a), $1(NO_3)_6$ (b), $2 \cdot (NO_3)_6$ (c), $2 \cdot (I_3)_3 \cdot (NO_3)_3$ (d), $3 \cdot (NO_3)_6$ (e), and $4 \cdot (NO_3)_6$ (f). Anions, hydrogen atoms, and solvate molecules were omitted for clarity.

Fig. S7 Top (left) and side (right) views of columnar packed structures of 4-layered tripalladium(II)cyclophanes, $3 \cdot (NO_3)_6$ (a), and $4 \cdot (NO_3)_6$ (b). Anions, hydrogen atoms, and solvate molecules were omitted for clarity.

Fig. S8 Reaction yields versus the time for photo-cyclopropanation of 1-methylcyclohexene with $2 \cdot (NO_3)_6$ depending on the mole ratios in CDCl₃ at 350 nm UV radiation.

Fig. S9 SEM image and EDX data of $2 \cdot (I_3)_3 \cdot (NO_3)_3$ crystal.

Fig. S10 ¹H NMR spectrum in CDCl₃ (a) and gas chromatography mass analysis (b) distilled photo-reaction solution. Inset spectrums show the spectra of CH₂ClI (ret. time, 3.422 min) and CHCl₂I (ret. time, 6.128 min).

Fig. S11 Plot of the absorbance of λ_{max} versus the amount of AgNO₃ for anion exchange of $2 \cdot (I_3)_3 \cdot (NO_3)_3$ in a mixed solution of H₂O and Me₂SO (v/v = 19 : 1). Inset shows UV-Vis absorption spectra in accordance with the added amount of AgNO₃.

Fig. S12 ¹H NMR and IR spectra of $2 \cdot (NO_3)_6$ (black), $2 \cdot (I_3)_3 \cdot (NO_3)_3$ (red), and recovered $2 \cdot (NO_3)_6$ (blue). See Figure S2 in the Supporting Information for the assignments in part (b).

Fig. S13 SEM image of the residue obtained during anion exchange of $2 \cdot (I_3)_3 \cdot (NO_3)_3$ with AgNO₃. Inset shows EDX analysis and powder X-ray diffraction pattern for AgI residue (white line). Red line represents the reference pattern of AgI (space group *P63mc*, JCPDS card no. 3-0940).