Electronic Supplementary Information:

Rb₂SeOCl₄·H₂O: A polar material among the alkali metal selenite halides with strong SHG response

Qi Wu,^{a,b†} Hongming Liu,^{a†} Lei Kang,^c Zheshuai Lin,^{c*} Xianggao Meng,^d Xingguo Chen,^a

Jingui Qin^{a*}

^a Department of Chemistry, Wuhan University, Wuhan 430072, China.

^b Department of Chemistry, Hubei Normal University, Huangshi 435002, China.

^cTechnical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^d Department of Chemistry, Central China Normal University, Wuhan 430079, China

Figure S1. X-ray diffraction powder patterns for Rb₂SeOCl₄·H₂O: Calculated and experimental.

Figure S2. The EDX spectrum of Rb₂SeOCl₄·H₂O crystal

Figure S3. FTIR spectrum for $Rb_2SeOCl_4 \cdot H_2O(4000 - 400 \text{ cm}^{-1} \text{ region})$

Figure S4. The total and partial density of states (T/PDOS) of Rb₂SeOCl₄·H₂O

Table S1. Atomic coordinates and equivalent isotropic displacement parameters for Rb₂SeOCl₄·H₂O.

Table S2. Bond lengths(Å) for $Rb_2SeOCl_4 \cdot H_2O_1$

Table S3. Bond angles(°) for $Rb_2SeOCl_4 \cdot H_2O_1$

Table S4. The calculated linear and nonlinear optical properties of Rb₂SeOCl₄·H₂O

Figure S1. X-ray diffraction powder patterns for Rb₂SeOCl₄·H₂O: Calculated and experimental.

Figure S2. The EDX spectrum of Rb₂SeOCl₄·H₂O crystal

Figure S3. FTIR spectrum for $Rb_2SeOCl_4 \cdot H_2O(4000 - 400 \text{ cm}^{-1} \text{ region})$

Figure S4 The total and partial density of states (T/PDOS) of Rb_2SeOCl_4 ·H₂O

Rb_2SeOCl_4 ·H ₂ O						
	Х	у	Z	U(eq)		
Cl(1)	10000	7662(2)	7504(4)	32(1)		
Cl(2)	10000	7517(2)	3331(4)	33(1)		
Cl(3)	7613(2)	9967(2)	2893(2)	34(1)		
O(1)	5000	9615(7)	5396(12)	55(2)		
O(2)	5000	5387(7)	5861(7)	32(2)		
Rb(1)	7180(1)	7582(1)	5383(1)	36(1)		
Se(1)	5000	5100(1)	7606(2)	21(1)		

Table S1. Atomic coordinates and equivalent isotropic displacement parameters for

 $^a\mathrm{U}(eq)$ is defined as one third of the trace of the othogonalized U^{ij} tensor

Table S2. Bond lengths(Å) for Rb₂SeOCl₄·H₂O.

Bond	Bond distances	Bond Bo	ond distances
Se(1)-Cl(1)#12	2.470(2)	Se(1)-O(2)	1.624(7)
Se(1)-Cl(3)#3	2.483(2)	O(1)-H(1A)	0.8500
Se(1)-Cl(3)#13	2.483(2)	O(1)-H(1B)	0.8500
Se(1)-Cl(2)#3	2.502(3)		

Table S3. Bond angles(°) for $Rb_2SeOCl_4 \cdot H_2O_1$

Bond	Angles	Bond	Angles
O(2)-Se(1)-Cl(1)#12	98.2(3)	O(2)-Se(1)-Cl(2)#3	95.1(3)
O(2)-Se(1)-Cl(3)#3	96.25(6)	Cl(1)#12-Se(1)-Cl(2)#3	166.79(16)
Cl(1)#12-Se(1)-Cl(3)#3	88.67(5)	Cl(3)#3-Se(1)-Cl(2)#3	89.90(5)
O(2)-Se(1)-Cl(3)#13	96.25(6)	Cl(3)#13-Se(1)-Cl(2)#3	89.90(5)
Cl(1)#12-Se(1)-Cl(3)#13	88.67(5)	H(1A)-O(1)-H(1B)	110.2
Cl(3)#3-Se(1)-Cl(3)#13	167.46(12)		

Table S4. The calculated linear and nonlinear optical properties of Rb₂SeOCl₄·H₂O

	Cal. band gap (eV)	Cal. SHG d _{ij} (pm/V)
Rb ₂ SeOCl ₄ ·H ₂ O	3.14	$d_{15} = d_{24} = 9.63$ $d_{33} = -4.67$

[#]d₃₆(KDP)=0.39 pm/V; <d_{eff}>(KDP)=0.33 pm/V