Sulphur-rich Functionalized Calix[4]arenes for selective complexation of Hg²⁺ over Cu²⁺, Zn²⁺ and Cd²⁺

Bachir Bensenane,^{a,b} Zouhair Asfari,^a Carlos Platas-Iglesias,^{c*} David Esteban-Gómez,^c Fatiha Djafri,^b Mourad Elhabiri^{d*} and Loïc J. Charbonnière^{a*}

a. Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse (LIMAA), IPHC - UMR 7178
– CNRS, ECPM, Bât R1N0, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France. Email:
l.Charbonn@unistra.fr

b. Laboratoire de chimie des matériaux, Faculté des sciences, Université d'Oran, B.P. 1524
El-Menouer, 31000 Oran, Algeria.

c. Universidade da Coruña,Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Facultade de Ciencias,, 15071, A Coruña, Galicia, Spain. Email: carlos.platas.iglesias@udc.es

d. Laboratoire de Chimie Bioorganique et Médicinale, UMR 7509 – CNRS, ECPM, 25, rue
Becquerel, 67087 Strasbourg Cedex 02, France. E-mail: elhabiri@unistra.fr

Supplementary information (30 pages including this one)

Figure S1. Representation of the unit cell of the X-Ray crystal structure of L1.

Figure S2. X-Ray crystal structure of L1.

Figure S3. (a) Absorption spectrophotometric titration of L1 by Hg²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 ν/ν); I = 0.01 M (C₂H₅)₄NNO₃); $T = 25.0(2)^{\circ}$ C; $\Box = 1$ cm; [L1]₀ = 10⁻⁴ M; (1) [Hg²⁺]₀/[L1]₀ = 0; (2) [Hg²⁺]₀/[L1]₀ = 5. The spectra are not corrected from the dilution effects. (b) Absorption electronic spectra of L1 and its Hg²⁺ monochelate.

Figure S4. (a) Absorption spectrophotometric titration of L2 by Hg²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 ν/ν); I = 0.01 M (C₂H₅)₄NNO₃); $T = 25.0(2)^{\circ}$ C; $\Box = 1$ cm; [L2]₀ = 10⁻⁴ M; (1) [Hg²⁺]₀/[L2]₀ = 0; (2) [Hg²⁺]₀/[L2]₀ = 2. The spectra are not corrected from the dilution effects. (b) Absorption electronic spectra of L2 and its Hg²⁺ monochelate.

Figure S5. (a) Absorption spectrophotometric titration of L3 by Hg²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 ν/ν); I = 0.01 M (C₂H₅)₄NNO₃); $T = 25.0(2)^{\circ}$ C; $\Box = 1$ cm; [L3]₀ = 10⁻⁴ M; (1) [Hg²⁺]₀/[L3]₀ = 0; (2) [Hg²⁺]₀/[L3]₀ = 3. The spectra are not corrected from the dilution effects. (b) Absorption electronic spectra of L3 and its Hg²⁺ monochelate.

Figure S6. Differential Electronic spectra of the mercuric complexes with ligands (a) L1, (b) L2, and (c) L3. Solvent: CH₃CN/CH₂Cl₂ (1/1 v/v); $I = 0.01 \text{ M} (C_2H_5)_4\text{NNO}_3$); $T = 25.0(2) \degree$ C.

Figure S7. Spectrofluorimetric titration of ligand L1 ($\lambda_{exc} = 289 \text{ nm}$) by Hg²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 v/v); $I = 0.01 \text{ M} (C_2H_5)_4\text{NNO}_3$); T = 25.0(2) °C; $\Box = 1 \text{ cm}$; $[L1]_0 = 10^{-4} \text{ M}$; (1) $[\text{Hg}^{2+}]_0/[\text{L1}]_0 = 0$; (2) $[\text{Hg}^{2+}]_0/[\text{L1}]_0 = 2$. Emission spectra not corrected from dilution effects.

Figure S8. Spectrofluorimetric titration of ligand L2 ($\lambda_{exc} = 289$ nm) by Hg²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 ν/ν); I = 0.01 M (C₂H₅)₄NNO₃); T = 25.0(2) °C; $\Box = 1$ cm; [L2]₀ = 10⁻⁴ M; (1) [Hg²⁺]₀/[L2]₀ = 0; (2) [Hg²⁺]₀/[L2]₀ = 2. Emission spectra not corrected from dilution effects.

Figure S9. Spectrofluorimetric titration of ligand L3 ($\lambda_{exc} = 287 \text{ nm}$) by Hg²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 *v/v*); *I* = 0.01 M (C₂H₅)₄NNO₃); *T* = 25.0(2) °C; \Box = 1 cm; [L3]₀ = 10⁻⁴ M; (1) [Hg²⁺]₀/[L3]₀ = 0; (2) [Hg²⁺]₀/[L3]₀ = 3. Emission spectra not corrected from dilution effects.

Figure S10. (a) Absorption spectrophotometric titration of L1 by Cu²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 ν/ν); I = 0.01 M (C₂H₅)₄NNO₃); $T = 25.0(2)^{\circ}$ C; $\Box = 1$ cm; [L1]₀ = 10⁻⁴ M; (1) [Cu²⁺]₀/[L1]₀ = 0; (2) [Cu²⁺]₀/[L1]₀ = 2.5. The spectra are not corrected from the dilution effects. (b) Absorption electronic spectra of L1 and its cupric monochelate.

Figure S11. (a) Absorption spectrophotometric titration of L2 by Cu²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 ν/ν); I = 0.01 M (C₂H₅)₄NNO₃); $T = 25.0(2)^{\circ}$ C; $\Box = 1$ cm; $[L2]_0 = 10^{-3}$ M; (1) $[Cu^{2+}]_0/[L2]_0 = 0$; (2) $[Cu^{2+}]_0/[L2]_0 = 13$. The spectra are not corrected from the dilution effects. (b) Absorption electronic spectra of L2 and its cupric monochelate.

Figure S12. (a) Absorption spectrophotometric titration of L3 by Cu²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 ν/ν); I = 0.01 M (C₂H₅)₄NNO₃); $T = 25.0(2)^{\circ}$ C; $\Box = 1$ cm; [L3]₀ = 10⁻⁴ M; (1) [Cu²⁺]₀/[L3]₀ = 0; (2) [Cu²⁺]₀/[L3]₀ = 2.5. The spectra are not corrected from the dilution effects. (b) Absorption electronic spectra of L3 and its cupric monochelate.

Figure S13. Spectrofluorimetric titration of ligand L1 ($\lambda_{exc} = 287$ nm) by Cu²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 *v/v*); *I* = 0.01 M (C₂H₅)₄NNO₃); *T* = 25.0(2) °C; \Box = 1 cm; [L1]₀ = 10⁻⁴ M; (1) [Cu²⁺]₀/[L1]₀ = 0; (2) [Cu²⁺]₀/[L1]₀ = 2.5. Emission spectra not corrected from dilution effects.

Figure S14. Spectrofluorimetric titration of ligand L3 ($\lambda_{exc} = 287$ nm) by Cu²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 *v/v*); *I* = 0.01 M (C₂H₅)₄NNO₃); *T* = 25.0(2) °C; \Box = 1 cm; [L3]₀ = 10⁻⁴ M; (1) [Cu²⁺]₀/[L3]₀ = 0; (2) [Cu²⁺]₀/[L3]₀ = 3.7. Emission spectra not corrected from dilution effects.

Figure S15. (a) Absorption spectrophotometric titration of L1 by Cd²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 ν/ν); I = 0.01 M (C₂H₅)₄NNO₃); $T = 25.0(2)^{\circ}$ C; $\Box = 1$ cm; [L1]₀ = 10⁻⁴ M; (1) [Cd²⁺]₀/[L1]₀ = 0; (2) [Cd²⁺]₀/[L1]₀ = 9.5. The spectra are not corrected from the dilution effects. (b) Absorption electronic spectra of L1 and its Cd²⁺ monochelate.

Figure S16. (a) Absorption spectrophotometric titration of L2 by Cd²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 ν/ν); I = 0.01 M (C₂H₅)₄NNO₃); $T = 25.0(2)^{\circ}$ C; $\Box = 1$ cm; $[L2]_0 = 1.58 \times 10^{-4}$ M; (1) $[Cd^{2+}]_0/[L2]_0 = 0$; (2) $[Cd^{2+}]_0/[L2]_0 = 2.53$. The spectra are not corrected from the dilution effects. (b) Absorption electronic spectra of L2 and its Cd²⁺ monochelate.

Figure S17. (a) Absorption spectrophotometric titration of L3 by Cd²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 v/v); I = 0.01 M (C₂H₅)₄NNO₃); $T = 25.0(2)^{\circ}$ C; $\Box = 1$ cm; $[L3]_0 = 10^{-4}$ M; (1) $[Cd^{2+}]_0/[L3]_0 = 0$; (2) $[Cd^{2+}]_0/[L3]_0 = 5$. The spectra are not corrected from the dilution effects. (b) Absorption electronic spectra of L3 and its Cd²⁺ monochelate.

Figure S18. (A) Spectrofluorimetric titration of ligand L1 ($\lambda_{exc} = 289$ nm) by Cd²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 ν/ν); I = 0.01 M (C₂H₅)₄NNO₃); T = 25.0(2) °C; $\Box = 1$ cm; [L1]₀ = 10⁻⁴ M; (1) [Cd²⁺]₀/[L1]₀ = 0; (2) [Cd²⁺]₀/[L1]₀ = 2.5. Emission spectra not corrected from dilution effects. (B) Reconstituted fluorescence emission spectra of L1 and its Cd²⁺ monochelate.

Figure S19. (A) Spectrofluorimetric titration of ligand L2 ($\lambda_{exc} = 287 \text{ nm}$) by Cd²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 ν/ν); I = 0.01 M (C₂H₅)₄NNO₃); T = 25.0(2) °C; $\Box = 1 \text{ cm}$; $[\mathbf{L2}]_0 = 1.58 \times 10^{-4} \text{ M}$; (1) [Cd²⁺]₀/[L2]₀ = 0; (2) [Cd²⁺]₀/[L2]₀ = 5. Emission spectra not corrected from dilution effects. (B) Reconstituted fluorescence emission spectra of L2 and its Cd²⁺ monochelate.

Figure S20. (A) Spectrofluorimetric titration of ligand L3 ($\lambda_{exc} = 287$ nm) by Cd²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 ν/ν); I = 0.01 M (C₂H₅)₄NNO₃); T = 25.0(2) °C; $\Box = 1$ cm; [L3]₀ = 10⁻⁴ M; (1) [Cd²⁺]₀/[L3]₀ = 0; (2) [Cd²⁺]₀/[L3]₀ = 7. Emission spectra not corrected from dilution effects. (B) Reconstituted fluorescence emission spectra of L3 and its Cd²⁺ monochelate.

Figure S21. (A) Spectrofluorimetric titration of ligand L2 ($\lambda_{exc} = 289$ nm) by Zn²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 ν/ν); I = 0.01 M (C₂H₅)₄NNO₃); T = 25.0(2) °C; $\Box = 1$ cm; $[L2]_0 = 1.58 \times 10^{-4}$ M; (1) $[Zn^{2+}]_0/[L2]_0 = 0$; (2) $[Zn^{2+}]_0/[L2]_0 = 85.4$. Emission spectra not corrected from dilution effects. (B) Reconstituted fluorescence emission spectra of L2 and its Zn²⁺ monochelate.

Figure S22. (A) Spectrofluorimetric titration of ligand L3 ($\lambda_{exc} = 287 \text{ nm}$) by Zn²⁺. Solvent: CH₃CN/CH₂Cl₂ (1/1 ν/ν); $I = 0.01 \text{ M} (C_2H_5)_4\text{NNO}_3$); T = 25.0(2) °C; $\Box = 1 \text{ cm}$; $[L3]_0 = 10^{-4} \text{ M}$; (1) $[Zn^{2+}]_0/[L3]_0 = 0$; (2) $[Zn^{2+}]_0/[L3]_0 = 9.4$. Emission spectra not corrected from dilution effects. (B) Reconstituted fluorescence emission spectra of L3 and its Zn²⁺ monochelate.

Figure S23. ESI mass spectra of the cupric complexes formed with ligand L1. Solvent: CH₃CN/CH₃OH (1/1 ν/ν); positive mode. (a) $[Cu^{2+}]_0 = [L1]_0 = 5 \times 10^{-5}$ M; V_c = 150 V. The ESI-MS spectra were limited to the areas of interest. No peaks of interest were detected in the excluded m/z regions. For the [L1+Cu]⁺, it is suggested that the copper cation is reduced.

Figure S24. ESI mass spectra of the cupric complexes formed with ligand L2. Solvent: CH₃CN/CH₃OH (1/1 ν/ν); positive mode. (a) $[Cu^{2+}]_0 = [L2]_0 = 5 \times 10^{-5}$ M; V_c = 150 V. The ESI-MS spectra were limited to the areas of interest. No peaks of interest were detected in the excluded *m/z* regions. For the [L2+Cu]⁺, it is suggested that the copper cation is reduced.

Figure S25. ESI mass spectra of the cupric complexes formed with ligand L3. Solvent: CH₃CN/CH₃OH (1/1 ν/ν); positive mode. (a) $[Cu^{2+}]_0 = [L3]_0 = 5 \times 10^{-5}$ M; V_c = 150 V. The ESI-MS spectra were limited to the areas of interest. No peaks of interest were detected in the excluded *m/z* regions. For the [L3+Cu]⁺, it is suggested that the copper cation is reduced.

Figure S26. ESI mass spectra of the mercuric complexes formed with ligand L1. Solvent: CH₃CN/CH₃OH (1/1 v/v); positive mode. (a) [Hg²⁺]₀ = 1.5 × 10⁻⁴ M; [L1]₀ = 5 × 10⁻⁵ M; V_c = 150 V. The ESI-MS spectra were limited to the areas of interest. No peaks of interest were detected in the excluded *m/z* regions.

Figure S27. ESI mass spectra of the mercuric complexes formed with ligand L2. Solvent: CH₃CN/CH₃OH (1/1 v/v); positive mode. (a) [Hg²⁺]₀ = [L2]₀ = 5 × 10⁻⁵ M; V_c = 150 V. The ESI-MS spectra were limited to the areas of interest. No peaks of interest were detected in the excluded m/z regions.

Figure S28. ESI mass spectra of the mercuric complexes formed with ligand L3. Solvent: CH₃CN/CH₃OH (1/1 v/v); positive mode. (a) [Hg²⁺]₀ = [L3]₀ = 5 × 10⁻⁵ M; V_c = 150 V. The ESI-MS spectra were limited to the areas of interest. No peaks of interest were detected in the excluded m/z regions.

Figure S29. ESI mass spectra of the cadmium(II) complexes formed with ligand L1. Solvent: CH₃CN/CH₃OH (1/1 v/v); positive mode. (a) $[Cd^{2+}]_0 = [L1]_0 = 5 \times 10^{-5}$ M; V_c = 200 V. The ESI-MS spectra were limited to the areas of interest. No peaks of interest were detected in the excluded *m/z* regions.

Figure S30. ESI mass spectra of the cadmium(II) complexes formed with ligand L2. Solvent: CH₃CN/CH₃OH (1/1 ν/ν); positive mode. (a) $[Cd^{2+}]_0 = 1.5 \times 10^{-4}$ M; $[L2]_0 = 5 \times 10^{-5}$ M; V_c = 150 V. The ESI-MS spectra were limited to the areas of interest. No peaks of interest were detected in the excluded *m/z* regions. For the $[L2+H_2O]^+$, it is suggested that one phenol is oxidized.

Figure S31. ESI mass spectra of the cadmium(II) complexes formed with ligand L3. Solvent: CH₃CN/CH₃OH (1/1 ν/ν); positive mode. (a) $[Cd^{2+}]_0 = 1.5 \times 10^{-4}$ M; $[L3]_0 = 5 \times 10^{-5}$ M; V_c = 150 V. The ESI-MS spectra were limited to the areas of interest. No peaks of interest were detected in the excluded *m/z* regions. For the $[L3+H_2O]^+$, it is suggested that one phenol is oxidized.

Figure S32. ESI mass spectra of the zinc(II) complexes formed with ligand L1. Solvent: CH₃CN/CH₃OH (1/1 v/v); positive mode. (a) $[Zn^{2+}]_0 = [L1]_0 = 5 \times 10^{-5}$ M; V_c = 200 V. The ESI-MS spectra were limited to the areas of interest. No peaks of interest were detected in the excluded m/z regions.

Figure S33. ESI mass spectra of the zinc(II) complexes formed with ligand L2. Solvent: CH₃CN/CH₃OH (1/1 v/v); positive mode. (a) $[Zn^{2+}]_0 = 3 \times 10^{-4}$ M; $[L2]_0 = 5 \times 10^{-5}$ M; V_c = 150 V. The ESI-MS spectra were limited to the areas of interest. No peaks of interest were detected in the excluded *m/z* regions. For the $[L2+H_2O]^+$, it is suggested that one phenol is oxidized. * An intense peak at *m/z* 708.40 could not be characterized.

Figure S34. ESI mass spectra of the zinc(II) complexes formed with ligand L3. Solvent: CH₃CN/CH₃OH (1/1 ν/ν); positive mode. (a) $[Zn^{2+}]_0 = 1.5 \times 10^{-4}$ M; $[L3]_0 = 5 \times 10^{-5}$ M; V_c = 150 V. The ESI-MS spectra were limited to the areas of interest. No peaks of interest were detected in the excluded *m/z* regions. For the $[L3+H_2O]^+$, it is suggested that one phenol is oxidized. * An intense peak at *m/z* 629.70 could not be characterized.

Figure S35. Calculated isosurfaces (0.02 a. u.) for MOs 165, 166, 167 and 177 (LUMO) of [HgL2]²⁺ (TPSSh/TZVP, acetonitrile solution).

Figure S36. ¹H NMR titration of ligand L¹ by Hg²⁺. Solvent: CD₃CN; $[L1]_0 = 2 \times 10^{-3}$ M; $T = 298^{\circ}$ C.

	[HgL1] ²⁺	[HgL2] ²⁺	[HgL3] ²⁺
Hg1-S(1)	2.433	2.592	2.591
Hg1-S(2)	2.432	2.630	2.607
Hg1-S(3)	-	2.807	2.787
Hg1-S(4)	-	-	2.730

Table S1. Optimized (TPSSh/TZVP) bond distances of the metal coordination environmentsin the mercuric complexes with ligands L1, L2 and L3.

Table S2. Optimized (TPSSh/SVP) bond distances of the metal coordination environments inthe cupric complexes with ligands L1, L2 and L3.

	[CuL1] ²⁺	[CuL2] ²⁺	[CuL3] ²⁺
Cu1-O(1)	2.157	-	-
Cu1-O(2)	2.230	-	-
Cu1-O(3)	2.621	-	-
Cu1-O(4)	2.153	2.134	-
Cu1-S(1)	2.419	2.394	2.410
Cu1-S(2)	2.373	2.427	2.403
Cu1-S(3)	-	2.405	2.367
Cu1-S(4)	-	-	2.356