Electronic Supplementary Informations

For

Syntheses, crystal structures and steady state and time-resolved fluorescence properties of a PET based macrocycle and its dinuclear $Zn^{II}/Cd^{II}/Hg^{II}$ complexes

Leena Mandal, Samit Majumder and Sasankasekhar Mohanta*

	$\lambda_{\max} (nm)$ [$\mathcal{E} (M^{-1} cm^{-1})$]				
H ₂ L	_	231 (sh)	286	_	
		[12,411]	[5,623]		
1	206	250	294	_	
	[82,146]	[19,057]	[8113]		
H ₂ L+ZnCl ₂ (saturated spectrum at	204	249	293	_	
1:2.2 equivalent ratio)	[89,652]	[17,481]	[7,748]		
2	_	267 (sh)	294	_	
		[8,567]	[9,592]		
$H_2L+Cd(NO_3)_2 \cdot 4H_2O(saturated$	_	253 (sh)	291	_	
spectrum at 1:2.2 equivalent ratio)		[7,475]	[8,890]		
3	_	_	304	362	
			[6,156]	[2,529]	
$H_2L+ \{Hg(NO_3)_2 + NaCl\}$	_	_	291	359	
(saturated spectrum at 1:2.4			[5,604]	[2,345]	
equivalent ratio)					
$H_2L + Hg(OAc)_2$ (saturated	_	241	304	359	
spectrum at 1:2.0 equivalent ratio)		[33,926]	[7,454]	[3,509]	

Table S1 Spectral parameters of spectrophotometric titrations of H_2L with $ZnCl_2$, $Cd(NO_3)_2 \cdot 4H_2O$, $\{Hg(NO_3)_2 \cdot H_2O + NaCl\}$ and $Hg(OAc)_2$

Scheme S1 Chemical structures of ligands.

Fig. S1 Electrospray ionization mass spectrum positive (ESI-MS positive) of H_2L in acetonitrile, showing observed and simulated isotopic distribution patterns.

Fig. S2 Electrospray ionization mass spectrum positive (ESI-MS positive) of $[Cd_2L(\mu H_2O)(H_2O)_2](NO_3)_2 \cdot 4H_2O$ (2) in acetonitrile, showing observed and simulated isotopic distribution patterns.

Fig. S3 Electrospray ionization mass spectrum positive (ESI-MS positive) of $[Hg_2LCl_2]$ (3) in acetonitrile, showing observed and simulated isotopic distribution patterns.

Fig. S4 UV-Vis spectra of H₂L (2×10^{-5} M), [Zn₂LCl₂]·2CH₃OH (1) (2×10^{-5} M) and solution of H₂L+ZnCl₂ in 1:2.2 equivalent ratio in acetonitrile.

Fig. S5 Spectrophotometric titration of H_2L (2 × 10⁻⁵ M) with Cd(NO₃)₂·4H₂O (0–2.6 equiv) in acetonitrile.

Fig. S6 Spectrophotometric titration of the H₂L $(2 \times 10^{-5} \text{ M})$ with {Hg(NO₃)₂·H₂O + NaCl} (0–2.6 equiv) in methanol–H₂O–acetonitrile (1:1:50).

Fig. S7 Spectrofluorimetric titration of H₂L (2 × 10⁻⁵ M) with Cd(NO₃)₂·4H₂O in acetonitrile. The arrow indicates the increasing concentration of Cd(NO₃)₂·4H₂O added. The inset shows the variation of the emission intensity with number of equivalents of Cd(NO₃)₂·4H₂O added. $\lambda_{ex} = 286$ nm.

Fig. S8 Spectrofluorimetric titration of H₂L (2 × 10⁻⁵ M) with Hg(OAc)₂ in methanol– acetonitrile (1:50). The arrow indicates the increasing concentration of Hg(OAc)₂ added. The inset shows the variation of the emission intensity with number of equivalents of Hg(OAc)₂ added. $\lambda_{ex} = 286$ nm.

Fig. S9 Spectrophotometric titration of H_2L (2 × 10⁻⁵ M) with triethylamine in acetonitrile.

Fig. S10 Spectrofluorimetric titration of H₂L (2 × 10⁻⁵ M) with triethylamine in acetonitrile. $\lambda_{ex} = 286$ nm.

Fig. S11 UV-Vis spectrum of 4-ethylphenol $(4 \times 10^{-5} \text{ M})$ in acetonitrile.

Fig. S12 Spectrophotometric titration of 4-ethylphenol $(4 \times 10^{-5} \text{ M})$ with triethylamine in acetonitrile.

Fig. S13 Spectrofluorimetric titration of 4-ethylphenol (4 × 10^{-5} M) with triethylamine in acetonitrile. $\lambda_{ex} = 278$ nm.

Fig. S14 Lowest energy absorption band and fluorescence spectra of the dizinc(II) compound **1**, revealing closely mirror image relationship.

Fig. S15 Lowest energy absorption band and fluorescence spectra of H_2L , revealing that there is no mirror image relationship.

Fig. S16 Comparative UV-Vis spectra of H₂L, 1:2.2 (saturated) H₂L–ZnCl₂ and 1:2 and 1:3 (both saturated) H₂L–Zn(NO₃)₂.6H₂O in acetonitrile. Concentration of H₂L: 2×10^{-5} M.

Fig. S17 Time-resolved fluorescence decay of 1:0.5 equivalent mixture of H_2L (2 × 10⁻⁵ M) and ZnCl₂ in acetonitrile. The fluorescence was monitored at 330 nm.

Fig. S18 Time-resolved fluorescence decay of 1:1 equivalent mixture of H_2L (2 × 10⁻⁵ M) and ZnCl₂ in acetonitrile. The fluorescence was monitored at 330 nm.

Fig. S19 Time-resolved fluorescence decay of 1:1.5 equivalent mixture of H_2L (2 × 10⁻⁵ M) and ZnCl₂ in acetonitrile. The fluorescence was monitored at 330 nm.

Fig. S20 Time-resolved fluorescence decay of 1:2.0 equivalent mixture of H_2L (2 × 10⁻⁵ M) and ZnCl₂ in acetonitrile. The fluorescence was monitored at 330 nm.

Fig. S21 Spectrophotometric titration of H_2L (2 × 10⁻⁵ M) with acetic acid in acetonitrile.

Fig. S22 Spectrofluorimetric titration of H₂L (2 × 10⁻⁵ M) with acetic acid in acetonitrile. $\lambda_{ex} = 286$ nm.

Fig. S23 Spectrophotometric titration of H_2L (2 × 10⁻⁵ M) with nitric acid in 1:30 water-acetonitrile.

Fig. S24 Spectrofluorimetric titration of H₂L (2 × 10⁻⁵ M) with nitric acid in 1:30 water-acetonitrile. $\lambda_{ex} = 286$ nm.

Fig. S25 Benesi–Hildebrand plot for the titration of H_2L with $Cd(NO_3)_2 \cdot 4H_2O$ in acetonitrile.

Fig. S26 Benesi–Hildebrand plot for the titration of H_2L (2 × 10⁻⁵ M) with $Hg(OAc)_2$ in methanol–acetonitrile (1:50).

Fig. S27 Benesi–Hildebrand plot for the titration of H_2L (2 × 10⁻⁵ M) with CoCl₂·6H₂O in acetonitrile.

Fig. S28 Colors of H₂L, 1:2 H₂L–Hg^{II}(OAc)₂ and 1:2:2 H₂L–Hg^{II}(OAc)₂–second metal salt solutions. Concentration of H₂L: 4×10^{-3} M. The solvents are acetonitrile / 1:50 methanol–acetonitrile.

Fig. S29 Parts of the UV-Vis spectra of the solution of H_2L (Violet), 1:2 solution of H_2L and $Hg(OAc)_2$ (Navy) and 1:2:2 solutions of H_2L , $Hg(OAc)_2$ and the following second metal salts: KClO₄ (Cyan), Ca(ClO₄)₂·4H₂O (Green), Ba(ClO₄)₂·H₂O (Red), Zn(ClO₄)₂·6H₂O (Olive), Cd(NO₃)₂·4H₂O (Magenta) and CdCl₂·H₂O (Orange). Concentration of H₂L: 1.5×10^{-4} M. The solvents are acetonitrile / 1:50 methanol-acetonitrile / 1:1:50 methanol-water-acetonitrile.