Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Lanthanide contraction for helicity fine-tuning and helix-winding control of single-helical metal complexes

Shiho Sairenji,^[a] Shigehisa Akine,*^[b] and Tatsuya Nabeshima*^[a]

a Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.

Phone/Fax: +81-29-853-4507; E-mail: nabesima@chem.tsukuba.ac.jp

b Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-

machi, Kanazawa 920-1192, Japan.

Phone: +81-76-264-5701; Fax +81-76-264-5742; E-mail: akine@se.kanazawa-u.ac.jp

Supporting Information

Spectroscopic measurements. UV-Vis spectra were measured on a JASCO V-660 spectrophotometer in a quartz cell with an optical path length of 1.0 mm. Circular dichroic spectra (CD) were measured on a JASCO J-720 spectrophotometer in a quartz cell with an optical path length of 1.0 mm. Mass spectra (ESI-TOF, positive mode) were recorded on an Applied Biosystems QStar Pulsar *i* spectrometer. ¹H NMR spectra were recorded on a Bruker AVANCE600 spectrometer at 600 MHz. In NMR measurements, tetrametylsilane was used as an internal standard (0 ppm).

UV-vis absorption and CD spectra of helical complexes

Figure S1. (a) UV-vis and (b) CD spectra (0.20 mM, chloroform/methanol, 1:1) of H_6L in the presence of zinc(II) acetate (3 equiv) and Ln(OAc)₃ (1 equiv, Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd).

Figure S2. (a) UV-vis and (b) CD spectra (0.20 mM, chloroform/methanol, 1:1) of H_6L in the presence of zinc(II) acetate (3 equiv) and $Ln(OAc)_3$ (1 equiv, Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y).

ESI mass spectra of H₆L in the presence of zinc(II) and metal ions

Figure S3. ESI mass spectrum of H_6L in the presence of zinc(II) acetate (3 equiv) and La(OAc)₃ (1 equiv). Measurement conditions: chloroform/methanol, 1:1, ~0.01 mM.

Figure S4. ESI mass spectrum of H_6L in the presence of zinc(II) acetate (3 equiv) and Ce(OAc)₃ (1 equiv). Measurement conditions: chloroform/methanol, 1:1, ~0.01 mM.

Figure S5. ESI mass spectrum of H_6L in the presence of zinc(II) acetate (3 equiv) and $Pr(OAc)_3$ (1 equiv). Measurement conditions: chloroform/methanol, 1:1, ~0.01 mM.

Figure S6. ESI mass spectrum of H_6L in the presence of zinc(II) acetate (3 equiv) and Nd(OAc)₃ (1 equiv). Measurement conditions: chloroform/methanol, 1:1, ~0.01 mM.

Figure S7. ESI mass spectrum of H_6L in the presence of zinc(II) acetate (3 equiv) and Sm(OAc)₃ (1 equiv). Measurement conditions: chloroform/methanol, 1:1, ~0.01 mM.

Figure S8. ESI mass spectrum of H_6L in the presence of zinc(II) acetate (3 equiv) and Eu(OAc)₃ (1 equiv). Measurement conditions: chloroform/methanol, 1:1, ~0.01 mM.

Figure S9. ESI mass spectrum of H_6L in the presence of zinc(II) acetate (3 equiv) and $Gd(OAc)_3$ (1 equiv). Measurement conditions: chloroform/methanol, 1:1, ~0.01 mM.

Figure S10. ESI mass spectrum of H_6L in the presence of zinc(II) acetate (3 equiv) and Tb(OAc)₃ (1 equiv). Measurement conditions: chloroform/methanol, 1:1, ~0.01 mM.

Figure S11. ESI mass spectrum of H_6L in the presence of zinc(II) acetate (3 equiv) and Dy(OAc)₃ (1 equiv). Measurement conditions: chloroform/methanol, 1:1, ~0.01 mM.

Figure S12. ESI mass spectrum of H_6L in the presence of zinc(II) acetate (3 equiv) and $Ho(OAc)_3$ (1 equiv). Measurement conditions: chloroform/methanol, 1:1, ~0.01 mM.

Figure S13. ESI mass spectrum of H_6L in the presence of zinc(II) acetate (3 equiv) and $Er(OAc)_3$ (1 equiv). Measurement conditions: chloroform/methanol, 1:1, ~0.01 mM.

Figure S14. ESI mass spectrum of H_6L in the presence of zinc(II) acetate (3 equiv) and $Tm(OAc)_3$ (1 equiv). Measurement conditions: chloroform/methanol, 1:1, ~0.01 mM.

Figure S15. ESI mass spectrum of H_6L in the presence of zinc(II) acetate (3 equiv) and Yb(OAc)₃ (1 equiv). Measurement conditions: chloroform/methanol, 1:1, ~0.01 mM.

Figure S16. ESI mass spectrum of H_6L in the presence of zinc(II) acetate (3 equiv) and Lu(OAc)₃ (1 equiv). Measurement conditions: chloroform/methanol, 1:1, ~0.01 mM.

Figure S17. ESI mass spectrum of H_6L in the presence of zinc(II) acetate (3 equiv) and Y(OAc)₃ (1 equiv). Measurement conditions: chloroform/methanol, 1:1, ~0.01 mM.

¹H NMR spectra of H₆L in the presence of zinc(II) and metal ions

Figure S18. ¹H NMR spectral changes of H_6L (0.20 mM) in the presence of zinc(II) acetate (3 equiv) and $Ln(OAc)_3$ (1 equiv, Ln = La, Sm, Y, and Lu) (600 MHz, (600 MHz, CDCl₃/CD₃OD, 1:1).

Figure S19. ¹H NMR spectral changes of H_6L (0.20 mM) in the presence of zinc(II) acetate (3 equiv) and $Ln(OAc)_3$ (1 equiv, Ln = Ce, Pr, Nd, and Eu) (600 MHz, $CDCl_3/CD_3OD$, 1:1).

Figure S20. ¹H NMR spectral changes of H_6L (0.20 mM) in the presence of zinc(II) acetate (3 equiv) and $Ln(OAc)_3$ (1 equiv, Ln = Gd, Tb, Dy, and Ho) (600 MHz, $CDCl_3/CD_3OD$, 1:1).

Figure S21. ¹H NMR spectral changes of H_6L (0.20 mM) in the presence of zinc(II) acetate (3 equiv) and $Ln(OAc)_3$ (1 equiv, Ln = Er, Tm and Yb) (600 MHz, CDCl₃/CD₃OD, 1:1).