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1. Calculation of weight percentage of MWCNTs in MWCNT/MIL-100(Fe) composites

The content of MWCNTs in the MWCNT/MIL-100(Fe) composites can be calculated 

using the TGA data using Eq. (S1):

   (S1)  0.75W.L.W.L.(wt.%)MWCNTs 100(Fe)MIL
C700C353

comp
C700T ooo

2OMWCNTs
 



where  is the temperature at which linker decomposition ends or MWCNT 
2OMWCNTsT 

oxidation begins during TGA,   stands for the comp
C700

comp
T

comp
C700T o 

2OMWCNTso 
2OMWCNTs

WWW.L. 
 

weight loss between  and 700 oC expressed as a percentage of the initial weight, 
2OMWCNTsT 

and the superscript "comp" denotes MWCNT/MIL-100(Fe) composite. For MIL-100(Fe), 

the linker decomposition was observed to end at 353 oC from the TGA profile. The weight 

loss for MIL-100(Fe) between 353 and 700 oC was measured to be equal to 1.8148 wt%, 

i.e.  = 1.8148%. The residual MWCNTs at the end of TGA amount to 0.75 100(Fe)MIL
C700C 353 o oW.L. 



wt%. The corresponding percentages of MWCNTs in the composites are calculated to be 

2.16, 5.90 and 10.72, respectively. The synthesized MWCNT/MIL-100(Fe) composites are 

referred to as MCn with n from 1 to 3 corresponding to the amount of added MWCNTs 

(60 mg, 180 mg and 300 mg respectively).
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Table S1. Calculation of weight percentages of MWCNTs in MWCNT/MIL-100(Fe) 

composites using TGA data.

Sample ID

(2O-MWCNTsT

oC)

(
comp
T 2-OMWCNTs

W

%)

(
comp

C700oW

%)

 

comp
C700T o

2-OMWCNTs
W.L.



MWCNTs 

(wt%)

MC1 350 62.5031 59.2829 3.2202 2.1587

MC2 345 55.9593 48.9947 6.9647 5.9032

MC3 333 57.4979 45.7181 11.7799 10.7184

                            

2. Magnified SEM images of MIL-100(Fe) and MWCNT/MIL-100(Fe) composites



3



4

Red arrows indicate locations of MWCNTs.



5

3. Magnified TEM images of MIL-100(Fe) and MWCNT/MIL-100(Fe) composite.

   

Red arrows indicate points of MWCNT agglomeration.
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4. PXRD patterns of pristine and functionalized MWCNTs

Fig. S1  PXRD patterns for pristine and acid-treated MWCNTs.

5. FTIR spectra of pristine and acid-treated (functionalized) MWCNTs

Fig. S2  FTIR spectra of pristine and acid-treated MWCNTs.
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6. Step-wise synthesis of MWCNT/MIL-100(Fe) composite

Fig. S3  In-situ synthesis of MWCNT/MIL-100(Fe) composite: (a) MWCNT carboxylation, (b) 

Dissociation of hydrated Fe-salt in deionized water, (c) Molecular-level interaction of negatively 

charged carboxyl groups on MWCNT and Fe3+ ions in aqueous solution, (d) Hydrothermal 

synthesis of MIL-100(Fe) molecules on the surface of MWCNT.
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7. Magnified FTIR spectra showing presence of C–O–Fe bonding in MWCNT/MIL-

100(Fe) composite.

Fig. S4  Magnified FTIR spectra of MIL-100(Fe) and MC3 between 500 and 540 cm-1. 

Red arrow indicates the existence of C–O–Fe bonding in MWCNT/MIL-100(Fe) 

composite.
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8. XPS spectra of acid-treated MWCNTs, MIL-100(Fe) and MC3

(a)

(b)
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(c)

Fig. S5  XPS spectra of (a) acid-treated MWCNTs, (b) MIL-100(Fe) and (c) MC3.

Table S2. Peak position and intensity data for XPS spectra of acid-treated MWCNTs, 

MIL-100(Fe) and MC3 (Red entries indicate presence of Fe–C–O bonding between 

MWCNTs and MIL-100(Fe) crystals in MC3).

Acid-treated MWCNTs MIL-100(Fe) MC3

Peak Position 
(ev)

Intensity
(at.%)

Position 
(ev)

Intensity
(at.%)

Position 
(ev)

Intensity 
(at.%)

C1s–A 286.17 0.87 282.95 37.76 283.20 22.78
C1s–B 284.92 37.06 286.88 10.67 286.93 8.99
C1s–C 286.66 1.73 NA NA 282.57 22.50
C1s–D 284.61 53.27 284.61 6.25 284.58 6.52
O1s–A 531.63 3.30 530.37 38.14 530.69 27.58
O1s–B 533.55 3.62 532.29 0.96 528.61 2.39
O1s–C 533.17 0.15 530.20 3.22 530.36 6.19
Fe2p–A NA NA 709.83 1.38 709.65 1.66
Fe2p–B NA NA 724.01 0.66 723.44 0.73
Fe2p–C NA NA 712.12 0.81 711.86 0.55
Fe2p–D NA NA 715.72 0.15 716.35 0.11
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9. SEM micrographs of pristine and acid-treated (functionalized) MWCNTs

         

                   

                      (a)                                                                              (b)

Fig. S6  SEM micrographs of (a) pristine MWCNTs, and (b) acid-treated MWCNTs.
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10. Atomic percentage of each element in MIL-100(Fe) and MWCNT/MIL-100(Fe) 

composites using EDS analysis and formula unit.

Fig. S7  EDS spectra and atomic percentages of Fe, C, and O in MIL-100(Fe) and 

MWCNT/MIL-100(Fe) composites.  
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Table S3 – Comparison of MWCNT content in MWCNT/MIL-100(Fe) composites 

calculated using EDS and EA.

Sample ID
EA EDS

MC1
0.82 3.44

MC2
4.70 2.49

MC3
8.08 7.28

11. PXRD patterns of iron oxide (-Fe2O3) residues recovered after TGA of MIL-

100(Fe) and MWCNT/MIL-100(Fe) composites

Fig. S8  PXRD patterns of residues recovered after TGA.



14

12. TGA of acid-treated MWCNTs in air

Fig. S9 TGA of acid-treated (functionalized) MWCNTs in air.

13. Calculation of specific heat capacity using DSC data

The specific heat capacity, Cp, can be calculated as [S2]:

                                      (S2)referencep,C
baselineDSCreferenceDSC

baselineDSCsampleDSC
pC 






where  is the specific heat capacity at temperature T, and  is the specific pC referencep,C

heat of the standard material (sapphire).
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14. Comparison of adsorption isotherms at 298 and 313 K

Fig. S10  Water adsorption isotherms at 298 and 313 K.

15. Calculation of differential isosteric heat of adsorption 

The average isosteric enthalpy of adsorption (Qst,ads) can be expressed as [S3]:

                                              (S3)

𝑄𝑠𝑡,𝑎𝑑𝑠=
1

𝑞ℎ𝑖𝑔ℎ ‒ 𝑞𝑙𝑜𝑤

𝑞ℎ𝑖𝑔ℎ

∫
𝑞𝑙𝑜𝑤

𝑄𝑠𝑡,𝑎𝑑𝑠,𝑑𝑖𝑓𝑓(𝑞)𝑑𝑞

where  and  denote the lower and upper limits of instantaneous water uptake 𝑞𝑙𝑜𝑤 𝑞ℎ𝑖𝑔ℎ

respectively, while the differential isosteric heat of adsorption  can be 𝑄𝑠𝑡,𝑎𝑑𝑠,𝑑𝑖𝑓𝑓

expressed as [S4]:
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     (S4)

















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1

2ln
TT

TT
p
pRQ diffads,st,

where  and  are the relative pressures corresponding to  for the 1p 2p highlow qqq 

isotherms measured at temperatures  and  respectively. Hence, for a range of q values, 1T 2T

a plot of  versus q can be obtained.    diffadsstQ ,,

Fig. S11  Variation of differential isosteric heat of adsorption with instantaneous 

water uptake.
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16. Steps to calculate the power capability (P.C.) for MIL-100(Fe) and MWCNT/MIL-

100(Fe) composites (MC1, -2, and -3)

a. Find which of the four materials shows highest percentage adsorbed amount, q*, at the 

end of cyclic adsorption/desorption test.

b. Find the minimum number of cycles, N*, which each of the other three materials require 

to reach q*.

c. Calculate the differential isosteric enthalpy of adsorption  for each material at diffads,st,Q

q*.

d. The power capability (P.C.) can now be estimated as:

    (S5)
tot

adsst,
*

T
QN

P.C. 

where  represents the total time elapsed during the cyclic adsorption/desorption test. totT

Table S4. Details for calculation of power capability for MIL-100(Fe) and 

MWCNT/MIL-100(Fe) composites (q* = 26.1% for MC1) 

Sample ID

adsst,Q

(kJmol-1) N*

totT

(sec.)

P.C.

(Wkg-1)

MIL-100(Fe) 51.19 12.22 5101194.5  1.03

MC1 49.32 21 5101480.5  1.78

MC2 55.32 11.4 51012655.5  1.28

MC3 40.88 14 51015115.5  1.33
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17. Correlation between amount of residual water retained after desorption and isosteric 

heat of adsorption for MIL-100(Fe) and MWCNT/MIL-100(Fe) composites

Table S5. Correlation between amount of residual water retained inside the pores at the 

end of single-cycle adsorption-desorption at 298 K, and  for MIL-100(Fe) and adsst,Q

MWCNT/MIL-100(Fe) composites.

Material

Residual water at the end of 

single-cycle adsorption-

desorption at 298 K (%)
 1kJmoladsst,Q

MIL-100(Fe) 3.02 51.19

MC1 1.95 49.32

MC2 3.10 55.32

MC3 0.51 40.88
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18. SEM micrographs of MIL-100(Fe) and MWCNT/MIL-100(Fe) composites before 

and after cyclic adsorption-desorption

Fig. S12  SEM micrographs of MIL-100(Fe) and MWCNT/MIL-100(Fe) composites 

before and after cyclic adsorption-desorption tests (red arrows indicate presence of 

MWCNTs).
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19. PXRD profiles of MIL-100(Fe) and MWCNT/MIL-100(Fe) composites before and 

after cyclic adsorption-desorption

Fig. S13  PXRD patterns for MIL-100(Fe) and MWCNT/MIL-100(Fe) composites 

before and after cyclic adsorption-desorption tests.
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