## Electronic Supplementary Information (ESI)

## Anion-Directed Supramolecular Chemistry Modulating the Magnetic Properties of Nanoscopic Mn Coordination Clusters: From Polynuclear High-Spin Complexes to SMMs

Lei Zhang,<sup>a,b</sup> Theresa Chimamkpam,<sup>b</sup> Camelia I. Onet,<sup>b</sup> Nianyong Zhu,<sup>b,c</sup> Rodolphe Clérac,<sup>d,e</sup> and Wolfgang Schmitt<sup>\*,b</sup>

<sup>a</sup> State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
 <sup>b</sup> School of Chemistry & CRANN, University of Dublin, Trinity College, Dublin 2, Ireland.
 <sup>c</sup> Institute of Molecular Functional Materials & Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Hong Kong, HK
 <sup>d</sup> CNRS, CRPP, UPR 8641, Pessac F-33600, France.

<sup>e</sup> Univ. Bordeaux, CRPP, UPR 8641, F-33600 Pessac, France

E-mail: schmittw@tcd.ie

## **Experimental Section**

**Materials and Instrumentation.** Commercially available reagents were bought from Sigma-Aldrich or ABCR and used as received without further purification. Fourier transform infrared spectroscopy (FTIR) data were collected on a Perkin-Elmer Spectrum 100 FT-IR Spectrometer. Elemental analyses (C, H, and N) were obtained from Microanalysis Lab, School of Chemistry & Chemical Biology, University College Dublin. The magnetic susceptibility measurements were obtained with the use of MPMS-XL Quantum Design SQUID magnetometer and PPMS-9 susceptometer. These magnetometer and susceptometer work between 1.8 and 400 K for dc applied fields ranging from -7 to 7 T (MPMS-XL). Measurements were performed on using polycrystalline samples (*ca.* 8-15 mg). Instantly prior to the measurements, the coordination compounds were separated from the mother liquor, dried for a few minutes at room temperature and sealed in polyethylene bags (3 cm  $\times$  0.5 cm  $\times$  0.02 cm; typically 15 to 30 mg) and covered by mineral oil (typical 3 to 8 mg) to avoid torquing effects. ac susceptibility measurements were measured with an oscillating ac field of 1 to 6 Oe with frequency between 10 to 10000 Hz (PPMS). The magnetic data were corrected for the sample holder, mineral oil and the diamagnetic contribution.

**Preparation of reaction mixture that led to the co-crystallization of I, II, and III:** A mixture of  $MnCl_2 \cdot 4H_2O$  (0.295 g, 1.5 mmol),  $KMnO_4$  (0.031 g, 0.2 mmol), *tert*-butylphosphonic acid (0.137 g, 1.0 mmol), pyridine (0.12 ml) and  $CH_3CN$  (25 mL) was stirred at room temperature for 5 hours and then filtered. The filtrate was kept at room temperature and large amount of red crystals were obtained after several weeks, from which complexes of **I**, **II**, and **III** were characterized.

Synthesis of III: Pure red crystals of III can be obtained by similar reaction as described above, but increasing the amount of  $MnCl_2 \cdot 4H_2O$  to 0.396 g (2.0 mmol). Yield: 60 % (based on Mn). CHN analysis on dried sample, expected for  $Mn_{21}P_{18}O_{66}N_8C_{112}H_{209}Cl_7$  (corresponding to the crystal formula and a loss of 1 CH<sub>3</sub>CN): calcd. (found) C 28.72 (27.56), H 4.50 (4.33), N 2.39 (2.16)%.

**Synthesis of IV:** A mixture of MnCl<sub>2</sub>·4H<sub>2</sub>O (0.201 g, 1.0 mmol), KMnO<sub>4</sub> (0.016 g, 0.1 mmol), *tert*-butylphosphonic acid (0.136 g, 1.0 mmol), 2-amino-pyridine (0.189 g, 2.0 mmol) and CH<sub>3</sub>OH

(20 mL) was stirred at room temperature for 5 hours and then filtered. The filtrate was kept at room temperature, and red crystals of **IV** were obtained within one week. Yield: 65 % (based on Mn). CHN analysis on dried sample, expected for  $Mn_{15}P_{12}Cl_2O_{58}C_{64}N_4H_{160}$  (corresponding to the crystal formula and a loss of 3 CH<sub>3</sub>OH): calcd. (found) C 24.17 (24.42), H 5.07 (4.24), N 1.76 (1.61)%.

X-ray Crystallography. Single crystal X-ray structure determination of the five compounds,  $[Mn^{III}_{6}(tert-butyl-PO_3)_{8}(pyridine)_{6}(Cl)]_{2}[Mn^{II}_{3}Mn^{III}_{9}(\mu_{4}-O)_{6}(\mu_{3}-OH)_{2}(\mu_{4}-Cl)_{4}(tert-butyl-PO_{3}H)_{3} (tert-butyl-PO_3)_7$ ]·2.5H<sub>2</sub>O·6CH<sub>3</sub>CN (I, include Mn<sub>12</sub>P<sub>10</sub>CCl<sub>4</sub>), [Mn<sup>III</sup><sub>6</sub>(tert-butyl-PO<sub>3</sub>)<sub>8</sub>- $(\text{pyridine})_6(\text{Cl}) [\text{Mn}_2^{\text{II}} \text{Mn}_{11}^{\text{III}} (\mu_4 - \text{O})_6 (\mu_3 - \text{O}) (\mu_3 - \text{OH}) (\mu_4 - \text{Cl})_4 (tert-butyl-PO_3H) (tert-butyl-PO_3)_9 - (tert-butyl-PO_3H) (tert-butyl-PO_3H) (tert-butyl-PO_3)_9 - (tert-butyl-PO_3H) (tert-butyl-PO_3H) (tert-butyl-PO_3)_9 - (tert-butyl-PO_3H) (tert-butyl-PO_3H$  $(H_2O)$ ]·2H<sub>2</sub>O·9CH<sub>3</sub>CN (II, include Mn<sub>13</sub>P<sub>10</sub>CCl<sub>4</sub>), [Cl $\subset$ Mn<sup>III</sup><sub>6</sub> (*tert*-butyl-PO<sub>3</sub>)<sub>8</sub>(pyridine)<sub>6</sub>]- $[Mn^{II}_{3}Mn^{III}_{12}(\mu_4-O)_6(\mu_3-O)_2(\mu_3-OH)(\mu_4-CI)_4(CI)_2(tert-butyI-PO_3)_{10}(H_2O)(pyridine)_2] \cdot 2H_2O-$ ·CH<sub>3</sub>CN (III, include  $Mn_{15}P_{10} \subset Cl_4$ ), and (2-amino-Hpyridine)<sub>2</sub>[Mn<sup>II</sup><sub>3</sub>Mn<sup>III</sup><sub>12</sub>( $\mu_4$ -O)<sub>8</sub>( $\mu_4$ -Cl)<sub>2</sub>- $(\mu$ -CH<sub>3</sub>O)<sub>4</sub>(CH<sub>3</sub>OH)<sub>2</sub>(*tert*-butyl-PO<sub>3</sub>H)<sub>2</sub>(*tert*-butyl-PO<sub>3</sub>)<sub>10</sub>]·8H<sub>2</sub>O·3CH<sub>3</sub>OH (**IV**) was performed at 150(K) on the Bruker SMART Apex diffractometer using graphite-monochromated Mo-K $\alpha$ radiation. Absorption corrections were applied using SADABS.<sup>1</sup> Structures were solved by direct method and refined by full-matrix least-squares on  $F^2$  using SHELXTL.<sup>2</sup> Contributions to scattering due to disordered solvent molecules were removed using the SOUEEZE routine of PLATON;<sup>3</sup> structures were then refined again using the data generated. Crystal data and details of data collection and refinement of I-IV were summarized in Table S1. Crystallographic data, CCDC 1062487-1062490, can be obtained free of charge from the Cambridge Crystallographic Data Centre viawww.ccdc.cam.ac.uk/data request/cif.

- 1. Sheldrick, G. M. *SADABS, Program for area detector adsorption correction.* Institute for Inorganic Chemistry, University of Göttingen, Göttingen (Germany), **1996**.
- 2. Sheldrick, G. M. SHELXL-97, Program for solution of crystal structures. University of Göttingen, Göttingen (Germany), **1997**.
- 3. Vandersluis, P.; Spek, A. L. Acta Crystallogr.A 1990, 46, 194.

|                                 |                   | I                                  | П                                  | ш                                   | IV                             |  |
|---------------------------------|-------------------|------------------------------------|------------------------------------|-------------------------------------|--------------------------------|--|
| Crystal.                        | det.              | $Mn_{24}P_{26}O_{90}N_{20}C_{180}$ | $Mn_{19}P_{18}O_{65}N_{18}C_{126}$ | $Mn_{42}P_{36}O_{134}N_{36}C_{264}$ | $Mn_{15}P_{12}O_{62}N_4C_{76}$ |  |
| formula                         |                   | H <sub>330</sub> Cl <sub>6</sub>   | H <sub>232</sub> Cl <sub>5</sub>   | $H_{476}Cl_{14}$                    | $H_{190}Cl_2 \\$               |  |
| Mr                              |                   | 6551.10                            | 4817.85                            | 10213.70                            | 3417.44                        |  |
| crystal system                  |                   | orthorhombic                       | monoclinic                         | triclinic                           | monoclinic                     |  |
| space group                     |                   | Pnma                               | $P2_{1}/c$                         | <i>P</i> -1                         | $P2_{1}/c$                     |  |
| a [Å]                           |                   | 42.075(8)                          | 25.261(5)                          | 15.503(3)                           | 17.320(3)                      |  |
| b [Å]                           |                   | 46.492(9)                          | 29.077(6)                          | 23.446(5)                           | 15.550(3)                      |  |
| c [Å]                           |                   | 14.649(3)                          | 30.460(6)                          | 33.878(7)                           | 30.118(6)                      |  |
| α[°]                            |                   | 90.00                              | 90.00                              | 92.11(3)                            | 90.00                          |  |
| β [°]                           |                   | 90.00                              | 111.77(3)                          | 95.61(3)                            | 105.40(3)                      |  |
| γ [°]                           |                   | 90.00                              | 90.00                              | 108.02(3)                           | 90.00                          |  |
| V [Å <sup>3</sup> ]             |                   | 28656(10)                          | 20778(7)                           | 11625(4)                            | 7820(3)                        |  |
| Z                               |                   | 4                                  | 4                                  | 1                                   | 2                              |  |
| T [K]                           |                   | 150                                | 150                                | 150                                 | 150                            |  |
| $ ho_{ m c} [{ m g \ cm^{-3}}]$ |                   | 1.518                              | 1.540                              | 1.459                               | 1.451                          |  |
| μ [mm <sup>-1</sup> ]           |                   | 1.295                              | 1.390                              | 1.372                               | 1.398                          |  |
| reflns coll.                    | coll. 164628      |                                    | 120476                             | 129226                              | 84934                          |  |
| unique refln                    | s                 | 25616                              | 36656                              | 42527                               | 14423                          |  |
| GOF                             | 1.037             |                                    | 1.114                              | 1.052                               | 1.032                          |  |
| R1 [I>2 <i>o</i> (I)]           | [a]               | 0.0768                             | 0.0984                             | 0.0558                              | 0.0616                         |  |
| wR2[I>2 <i>o</i> (I)            | )] <sup>[b]</sup> | 0.1667                             | 0.2015                             | 0.1531                              | 0.1459                         |  |

Table S1. Crystal data and structure refinements for I-IV.

[a]  $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ . [b]  $wR2 = \{\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2] \}^{1/2}$ .

**Table S2.** Bond valance sum calculations for the polynuclear Mn-based complexes inI-IV.

| I   | Mn site          | Mn1   | Mn2   | Mn3   | Mn4   | Mn5   | Mn6   | Mn7   | Mn8   | Mn9   | Mn10  | Mn11  | Mn12  | Mn13  |
|-----|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|     | BVS              | 3.491 | 3.455 | 3.414 | 3.524 | 3.392 | 3.415 | 2.435 | 3.008 | 2.980 | 3.052 | 3.250 | 1.735 | 3.215 |
|     | assigned<br>O.S. | +3    | +3    | +3    | +3    | +3    | +3    | +2    | +3    | +3    | +3    | +3    | +2    | +3    |
| п   | Mn site          | Mn1   | Mn2   | Mn3   | Mn4   | Mn5   | Mn6   | Mn7   | Mn8   | Mn9   | Mn10  | Mn11  | Mn12  | Mn13  |
|     | BVS              | 3.347 | 3.401 | 3.327 | 3.392 | 3.458 | 3.407 | 2.563 | 2.975 | 2.870 | 3.194 | 3.092 | 3.174 | 1.720 |
|     | assigned<br>O.S. | +3    | +3    | +3    | +3    | +3    | +3    | +2    | +3    | +3    | +3    | +3    | +3    | +2    |
|     | Mn site          | Mn14  | Mn15  | Mn16  | Mn17  | Mn18  | Mn19  |       |       |       |       |       |       |       |
|     | BVS              | 3.065 | 3.168 | 3.163 | 3.093 | 2.940 | 2.951 |       |       |       |       |       |       |       |
|     | assigned<br>O.S. | +3    | +3    | +3    | +3    | +3    | +3    |       |       |       |       |       |       |       |
| 111 | Mn site          | Mn1   | Mn2   | Mn3   | Mn4   | Mn5   | Mn6   | Mn7   | Mn8   | Mn9   | Mn10  | Mn11  | Mn12  | Mn13  |
|     | BVS              | 3.205 | 3.193 | 3.183 | 3.212 | 3.185 | 3.221 | 1.841 | 1.749 | 3.023 | 3.078 | 1.727 | 3.113 | 3.154 |
|     | assigned<br>O.S. | +3    | +3    | +3    | +3    | +3    | +3    | +2    | +2    | +3    | +3    | +2    | +3    | +3    |
|     | Mn site          | Mn14  | Mn15  | Mn16  | Mn17  | Mn18  | Mn19  | Mn20  | Mn21  |       |       |       |       |       |
|     | BVS              | 3.106 | 3.037 | 3.198 | 2.979 | 3.107 | 2.923 | 3.085 | 3.181 |       |       |       |       |       |
|     | assigned<br>O.S. | +3    | +3    | +3    | +3    | +3    | +3    | +3    | +3    |       |       |       |       |       |
| IV  | Mn site          | Mn1   | Mn2   | Mn3   | Mn4   | Mn5   | Mn6   | Mn7   | Mn8   |       |       |       |       |       |
|     | BVS              | 1.560 | 3.130 | 3.204 | 3.221 | 3.011 | 2.939 | 3.257 | 1.778 |       |       |       |       |       |
|     | assigned<br>O.S. | +2    | +3    | +3    | +3    | +3    | +3    | +3    | +2    |       |       |       |       |       |











**Fig. S1** Ortep diagrams for the asymmetric unit of (a) **I**; (b) **II**; (c) **III**; (d) **IV**. Ellipsoids shown at 50% probability, hydrogen atoms omitted for clarity. Color code: Mn sky blue, P orange, O red, C black, Cl green, N blue.



**Fig. S2** Packing arrangement of the anionic Mn coordination clusters (blue polyhedra) and cationic Mn complexes (orange polyhedra) in (a) I; (b) II; (c) III.



Fig. S3 Packing arrangement of the anionic Mn coordination clusters (blue polyhedra) in IV.



Fig. S4 Negative-mode MALDI-MS spectra to identify the co-crystallization of I, II, and III in the reaction mixture 24 hours after preparation.



**Fig. S5** Comparison of experimental isotopic envelops (red spectra) with simulated patterns (green spectra) for signals in Figure S4 and Table 1, m/z: (a) 2192.45; (b) 2256.55; (c) 2292.52; (d) 2311.53; (e) 2330.49; (f) 2348.49; (g) 2364.46; (h) 2383.44; (i) 2399.25; (j) 2489.36; (k) 2508.35; (l) 2537.41.



**Fig. S6** Positive-mode MALDI-MS spectra to identify the charge-balancing  $[Cl \subset Mn_6(tert-butyl-PO_3)_8]$  cluster in **I**, **II** and **III**: (upper) reaction mixture 24 hours after preparation; (bottom) crystalline products dissolved in CH<sub>3</sub>CN. Signals centered at m/z 1452.81 correspond to  $[Cl \subset Mn_6(tert-butyl-PO_3)_8]^+$  (calcd. m/z 1452.83).



**Fig. S7** Structure-type that forms as charge-balancing  $[Cl \subset Mn_6(tert-butyl-PO_3)_8]^+$  coordination cluster in **I**, **II** and **III**; see also *Chem. Commun.* **2013**, 66.



**Fig. S8** Frequency dependence of the real ( $\chi'$ , left) and imaginary ( $\chi''$ , right) components of the ac susceptibility, between 0 and 3500 Oe and between 10 and 10000 Hz, for  $Mn_{15}P_{12} \subset Cl_2$  at 1.85 K. Solid lines are visual guides.



Fig. S9 Pictographical representation that highlights a comparable supramolecular anion effect in a polyoxovanadate system. In contrast to the discussed Mn system, here halide templates reside in the cavities of hollow cluster cages; in this system chloride ions stabilize tetranuclear vanadate  $\{V_4\}$  units (represented as green squares) and H<sub>2</sub>O molecules stabilize dinuclear  $\{V_2\}$  sub-units (represented as red lines); see also *J. Am. Chem. Soc.* 2011, 133, 11240.