ESI to accompany:

Peripheral halo-functionalization in [Cu(N^N)(P^P)]⁺ emitters: their influence on the performances of light-emitting electrochemical cells

Fabian Brunner,^a Laura Martínez-Sarti,^b Sarah Keller,^a Antonio Pertegás,^b Alessandro Prescimone,^a Edwin C. Constable,^a Henk J. Bolink^{*b,c} and Catherine E. Housecroft^{*a}

Fig. S1. Structure of the [Cu(**3**)(xantphos)]⁺ cation.

Fig. S2. Structure of the $[Cu(1)(POP)]^+$ cation.

Fig. S3. Structure of the $[Cu(1)_2]^+$ cation.

Fig. S4. Solution absorption spectra of $[Cu(N^N)(POP)][PF_6]$ (N^N = 1-5).

Fig. S5. Normalized solid-state emission spectra of $[Cu(N^N)(POP)][PF_6]$ (N^N = 1–5).

Fig. S6. Normalized solution (CH₂Cl₂, 2.5 x 10^{-5} mol dm⁻³) emission spectra of [Cu(N^N)(xantphos)][PF₆] (N^N = **1–5**).

Fig S7. Normalized thin film emission spectra of $[Cu(N^N)(POP)][PF_6]$ (N^N = 1–5).

Fig S8. Normalized thin film emission spectra of $[Cu(N^N)(xantphos)][PF_6](N^N = 1-5)$.

Fig. S9. EL spectra for LECs.

Fig. S10. Luminance and average voltage versus time for the LEC containing [Cu(**3**)(POP)][PF₆].

Fig S11. Luminance and average voltage versus time for the LEC with [Cu(4)(POP)][PF₆].

Fig S12. Luminance and average voltage versus time for the LEC with $[Cu(4)(xantphos)][PF_6]$.

Fig. S13. Luminance, average voltage and efficiency in cd A^{-1} versus time for the LEC with $[Cu(3)(xantphos)][PF_6]$.

Fig. S14. Average voltage for glass/ITO/PEDOT:PSS/active layer/Al devices.

Table S1. Photoluminescence lifetimes $(\tau_{1/2})$ for $[Cu(N^N)(P^P)][PF_6]$ complexes.

Fig. S1. Structure of the $[Cu(3)(xantphos)]^+$ cation in $[Cu(3)(xantphos)][PF_6]$: 0.5H₂O with ellipsoids plotted at the 30% probability level; H atoms are omitted for clarity. The bromophenyl group containing Br2 is disordered and has been modelled over two sites of equal occupancy which share atom C55 in common; only one site is shown. Selected bond parameters: Cu1–P1 = 2.317(3), Cu1–P2 = 2.258(3), Cu1–N1 = 2.080(8), Cu1–N2 = 2.121(8) Å; P1–Cu1–P2 = 117.08(11), P1–Cu1–N1 = 104.2(3), P2–Cu1–N1 = 119.6(3), P1–Cu1–N2 = 100.2(2), P2–Cu1–N2 = 129.3(2), N1–Cu1–N2 = 78.8(3)°.

Fig. S2. Structure of the $[Cu(1)(POP)]^*$ cation in $[Cu(1)(POP)][PF_6]$ 0.8H₂O with ellipsoids plotted at the 30% probability level; H atoms are omitted for clarity. The pyridine ring containing N2 and the attached fluorophenyl group containing F2 are disordered and the unit has been modelled over two sites of 0.65:0.35 fractional occupancies; only the major occupancy site is shown. Selected bond parameters: Cu1–N1 = 2.099(6), Cu1–N2 = 2.097(5), Cu1–P1 = 2.2523(15), Cu1–P2 = 2.297(2) Å; N1–Cu1–N2 = 78.5(2), N1–Cu1–P1 = 123.71(15), N2–Cu1–P1 = 120.00(16), N1–Cu1–P2 = 104.32(15), N2–Cu1–P2 = 116.27(17), P1–Cu1–P2 = 110.37(8)°.

Fig. S3. Structure of the $[Cu(1)_2]^*$ cation in $[Cu(1)_2][PF_6]$ with ellipsoids plotted at the 30% probability level; H atoms are omitted for clarity. Selected bond parameters: Cu1–N2 = 2.044(2), Cu1–N1 = 2.001(2), Cu1–N3 = 2.027(2), Cu1–N4 = 2.000(2) Å; N2–Cu1–N1 = 82.13(9), N2–Cu1–N3 = 117.02(9), N1–Cu1–N3 = 123.42(10), N2–Cu1–N4 = 123.20(10), N1–Cu1–N4 = 133.76(10), N3–Cu1–N4 = 81.89(9)°.

Fig. S4. Solution (CH₂Cl₂, 2.5 x 10^{-5} mol dm⁻³) absorption spectra of [Cu(N^N)(POP)][PF₆] (N^N = **1–5**) complexes.

Fig. S5. Normalized solid-state emission spectra of $[Cu(N^N)(POP)][PF_6]$ (N^N = 1–5). (λ_{exc} = 365 nm).

Fig. S6. Normalized solution $(CH_2CI_2, 2.5 \times 10^{-5} \text{ mol dm}^{-3})$ emission spectra of $[Cu(N^{A}N)(xantphos)][PF_6]$ $(N^{A} = 1-5)$. ($\lambda_{exc} = 400 \text{ nm}$).

Fig. 57. Normalized thin film emission spectra of $[Cu(N^N)(POP)][PF_6]$ (N^N = 1–5). (λ_{exc} = 365 nm). The thin film consisted of the complex mixed with the ionic liquid 1-ethyl-3-methylimidazolium hexafluoridophosphate.

Fig. S8. Normalized thin film emission spectra of $[Cu(N^N)(xantphos)][PF_6]$ ($N^N = 1-5$). ($\lambda_{exc} = 365$ nm). The thin film consisted of the complex mixed with the ionic liquid 1-ethyl-3-methylimidazolium hexafluoridophosphate.

Fig. S9. EL spectra for LECs containing $[Cu(3)(xantphos)]^{+}$, $[Cu(2)(POP)]^{+}$, $[Cu(2)(xantphos)]^{+}$, $[Cu(1)(POP)]^{+}$, $[Cu(1)(xantphos)]^{+}$, $[Cu(5)(POP)]^{+}$ and $[Cu(5)(xantphos)]^{+}$.

Fig. S10. Luminance (blue line) and average voltage (red symbols) versus time for the LEC with $[Cu(3)(POP)][PF_6]$ by applying a block-wave pulsed current of 50 A m⁻² at a frequency of 1 kHz and a duty cycle of 50%.

Fig. S11. Luminance (blue line) and average voltage (red symbols) versus time for the LEC with $[Cu(4)(POP)][PF_6]$ by applying a block-wave pulsed current of 50 A m⁻² at a frequency of 1 kHz and a duty cycle of 50%.

Fig. S12. Luminance (blue line) and average voltage (red symbols) versus time for the LEC with $[Cu(4)(xantphos)][PF_6]$ by applying a blockwave pulsed current of 50 A m⁻² at a frequency of 1 kHz and a duty cycle of 50%.

Fig. S13. Luminance (blue line), average voltage (red symbols) and efficiency in cd A^{-1} (green line) versus time for the LEC with $[Cu(3)(xantphos)][PF_6]$ by applying a block-wave pulsed current of 50 A m⁻² at a frequency of 1 kHz and a duty cycle of 50%.

Fig. S14. Average voltage for glass/ITO/PEDOT:PSS/active layer/Al devices measured by applying a block-wave pulsed current of 50 A m^{-2} at a frequency of 1 kHz and a duty cycle of 50%. The active layer consisted of the different [Cu(N^N)(P^P)][PF6] (N^N = 1, 2 and 5) complexes mixed with the ionic liquid 1-ethyl-3-methylimidazolium hexafluoridophosphate.

Table S1. Photoluminescence lifetimes ($\tau_{1/2}$) for [Cu(N^N)(P^P)][PF_6] complexes.

Complex cation	CH ₂ Cl ₂ degassed solution ^{a,b}					Powder ^e				
	$ au_{1/2}(1)$	<i>A</i> 1	$ au_{1/2}(2)$	A2	$ au_{1/2}(av)$	$ au_{1/2}(1)$	<i>A</i> 1	$ au_{1/2}(2)$	A2	$ au_{1/2}(av)$
	/ μs		/ μs		/ μs	/ μs		/ μs		/ μs
$[Cu(1)(POP)]^+$	4.5	Į			4.5	11.7	0.9118	1.5	0.05582	11.1
$[Cu(2)(POP)]^+$	4.2				4.2	5.6	0.5335	1.5	0.3531	4.0
$[Cu(3)(POP)]^+$	4.4				4.4	7.1	0.3976	1.6	0.4517	4.2
$[Cu(4)(POP)]^+$	4.1				4.1	2.3	0.2638	0.6	0.4417	1.2
$[Cu(5)(POP)]^+$	4.5	0.4225	1.8	0.504	3.0	11.5	0.8209	1.8	0.1259	10.2
$[Cu(1)(xantphos)]^+$	2.5				2.5	7.2	0.6052	0.8	0.1709	5.8
$[Cu(2)(xantphos)]^+$	2.8	1			2.8	7.0	0.5854	1.9	0.3025	5.2
$[Cu(3)(xantphos)]^+$	2.8				2.8	8.3	0.5975	1.9	0.3223	6.1
[Cu(4)(xantphos)] ⁺	2.6				2.6	4.7	0.4578	1.2	0.4559	3.0
$[Cu(5)(xantphos)]^+$	3.7				3.7	7.2	0.6728	1.6	0.2477	5.7