The Synthesis and Structures of 1,1'-Bis(sulfonyl)ferrocene Derivatives

Kullapa Chanawanno,^a Cole Holstrom,^b Laura A. Crandall,^c Henry Dodge,^d Victor N. Nemykin,^b Richard S. Herrick^d and Christopher J. Ziegler*^c

- a. Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand).
- b. Department of Chemistry & Biochemistry University of Minnesota Duluth 1039 University Drive, Duluth, MN 55812 (USA).
- c. Department of Chemistry, University of Akron, Akron, Ohio 44312-3601 (USA). Email: ziegler@uakron.edu
- d. Department of Chemistry, College of the Holy Cross, 1 College St, Worcester, MA 01610 (USA).

Supplementary Information

Table of Contents

	Page
Figure S1 ¹ H-NMR of 2 (300 MHz, DMSO- d_6)	4
Figure S2 ¹ H-NMR of 3 (300 MHz, DMSO- d_6)	5
Figure S3 ¹³ C-NMR of 3 (500 MHz, CDCl ₃)	5
Figure S4 ¹ H-NMR of 4 (300 MHz, CDCl ₃)	6
Figure S5 ¹³ C-NMR of 4 (500 MHz, CDCl ₃)	6
Figure S6 ¹ H-NMR of 5 (300 MHz, CDCl ₃)	7
Figure S7 ¹³ C-NMR of 5 (500 MHz, CDCl ₃)	7
Figure S8 ¹ H-NMR of 6 (300 MHz, CDCl ₃)	8
Figure S9 ¹³ C-NMR of 6 (500 MHz, CDCl ₃)	8
Figure S10 ¹ H-NMR of 7 (300 MHz, CDCl ₃)	9
Figure S11 ¹³ C-NMR of 7 (500 MHz, CDCl ₃)	10
Figure S12 ¹ H-NMR of 8 (300 MHz, CDCl ₃)	11
Figure S13 ¹³ C-NMR of 8 (500 MHz, CDCl ₃)	11
Figure S14 ¹ H-NMR of 9 (300 MHz, CDCl ₃)	12
Figure S15 ¹³ C-NMR of 9 (500 MHz, CDCl ₃)	12
Figure S16 ¹ H-NMR of 10 (300 MHz, CDCl ₃)	13
Figure S17 ¹³ C-NMR of 10 (500 MHz, CDCl ₃)	13
Figure S18 ¹ H-NMR of 11 (300 MHz, CDCl ₃)	14
Figure S19 ¹³ C-NMR of 11 (500 MHz, CDCl ₃)	15
Figure S20 ¹ H-NMR of 12 (300 MHz, CDCl ₃)	16
Figure S21 ¹³ C-NMR of 12 (500 MHz, CDCl ₃)	16
Figure S22 ¹ H-NMR of 13 (300 MHz, CD ₃ OD)	17
Figure S23 ¹³ C-NMR of 13 (500 MHz, CD ₃ OD)	18
Figure S24 HRMS ESI of 4 (top: measured, bottom: calculated)	18
Figure S25 HRMS ESI of 5 (top: measured, bottom: calculated)	19
Figure S26 HRMS ESI of 6 (top: measured, bottom: calculated)	19
Figure S27 HRMS ESI of 7 (top: measured, bottom: calculated)	20
Figure S28 HRMS ESI of 8 (top: measured, bottom: calculated)	20
Figure S29 HRMS ESI of 9 (top: measured, bottom: calculated)	21
Figure S30 HRMS ESI of 10 (top: calculated, bottom: measured)	21
Figure S31 HRMS ESI of 11 (top: calculated, bottom: measured)	22
Figure S32 HRMS ESI of 12 (top: measured, bottom: calculated)	22
Figure S33 HRMS ESI of 13 (top: measured, bottom: calculated)	23

Figure S34 Ferrocene geometries of 2 and 3	23
Figure S35 Ferrocene geometries of mono sulfonamides 4-7	24
Figure S36 Ferrocene geometries of bis sulfonamides 8-13	24
Figure S37 Packing diagrams with intermolecular hydrogen bonding interactions (blue dash 2	lines) of 26
Figure S38 Packing diagrams with intermolecular hydrogen bonding interactions (blue dash 4	lines) of 27
Figure S39 Packing diagrams with intermolecular hydrogen bonding interactions (blue dash 5	lines) of 28
Figure S40 Packing diagrams with intermolecular hydrogen bonding interactions (blue dash 6	lines) of 29
Figure S41 Packing diagrams with intermolecular hydrogen bonding interactions (blue dash 7	lines) of 30
Figure S42 Packing diagrams with intermolecular hydrogen bonding interactions (blue dash 8	lines) of 31
Figure S43 Packing diagrams with intermolecular hydrogen bonding interactions (blue dash 9	lines) of 32
Figure S44 Packing diagrams with intermolecular hydrogen bonding interactions (blue dash 10	lines) of 33
Figure S45 Packing diagrams with intermolecular hydrogen bonding interactions (blue dash 11	lines) of 34
Figure S46 Packing diagrams with intermolecular hydrogen bonding interactions (blue dash 12	lines) of 35
Figure S47 Packing diagrams with intermolecular hydrogen bonding interactions (blue dash 13	lines) of 36
Figure S48 Cyclic voltammograms of compounds 3-13 in acetonitrile/0.1 M tetra-n-butylam hexafluorophosphate (TBAPF ₆)	monium 38
Table S1 Crystal data and refinement parameters of compounds 2-13	25

 Table S2 Electrochemical data for compounds 3-13

Figure S1 ¹H-NMR of 2 (300 MHz, DMSO-d₆)

Figure S3 ¹³C-NMR of 3 (500 MHz, CDCl₃)

Figure S5 ¹³C-NMR of 4 (500 MHz, CDCl₃)

Figure S7 ¹³C-NMR of 5 (500 MHz, CDCl₃)

Figure S9 ¹³C-NMR of 6 (500 MHz, CDCl₃)

Figure S10 ¹H-NMR of 7 (300 MHz, CDCl₃)

Figure S13 ¹³C-NMR of 8 (500 MHz, CDCl₃)

Figure S15 ¹³C-NMR of 9 (500 MHz, CDCl₃)

Figure S17 ¹³C-NMR of 10 (500 MHz, CDCl₃)

Figure S18 ¹H-NMR of 11 (300 MHz, CDCl₃)

Figure S19 ¹³C-NMR of 11 (500 MHz, CDCl₃)

Figure S21 ¹³C-NMR of 12 (500 MHz, CDCl₃)

Figure S22 ¹H-NMR of 13 (300 MHz, CD₃OD)

Figure S23 ¹³C-NMR of 13 (500 MHz, CD₃OD)

Figure S24 HRMS ESI of 4 (top: measured, bottom: calculated)

Figure S25 HRMS ESI of 5 (top: measured, bottom: calculated)

Figure S26 HRMS ESI of 6 (top: measured, bottom: calculated)

Figure S27 HRMS ESI of 7 (top: measured, bottom: calculated)

Figure S28 HRMS ESI of 8 (top: measured, bottom: calculated)

Figure S29 HRMS ESI of 9 (top: measured, bottom: calculated)

Figure S30 HRMS ESI of 10 (top: calculated, bottom: measured)

Figure S31 HRMS ESI of 11 (top: calculated, bottom: measured)

Figure S32 HRMS ESI of 12 (top: measured, bottom: calculated)

Figure S33 HRMS ESI of 13 (top: measured, bottom: calculated)

Figure S34 Ferrocene geometries of 2 and 3

Figure S35 Ferrocene geometries of mono sulfonamides 4-7

Figure S36 Ferrocene geometries of bis sulfonamides 8-13

Compound	2	3	4	5	6	7	8	9	10	11	12	13
Emp. form	C10H16F	C10H8Cl	C ₁₃ H ₁₄ C	C15H18C	C13H14C	C15H18C	C16H24F	C ₁₈ H ₂₈ F	C20H32F	C34H60F	C ₂₄ H ₂₄ F	C20H28F
	eN2O6S	$_2FeO_4S_2$	lFeNO ₄	lFeNO ₄	lFeNO ₄	lFeNO ₆	eN_2O_4S	eN ₂ O ₄ S	eN2O4S	eN_2O_4S	eN ₂ O ₄ S	eN_2O_8S
	2		S ₂	S ₂	S ₂	S ₂	2	2	2	2	2	2
Form.	380.22	383.03	403.67	431.72	403.67	463.72	428.34	456.40	484.45	680.83	524.42	544.41
weight												
Crystal	Monocl	Monocl	Monocl	Triclini	Triclini	Triclini	Monocl	Monocl	Triclini	Monocl	Monocl	Monocl
system	inic	inic	inic	c	с	с	inic	inic	c	inic	inic	inic
Space	$P2_1/c$	$P2_1/c$	P2 ₁ /n	P-1	P-1	P-1	$P2_1/c$	$P2_1/c$	P-1	$P2_1/c$	P2 ₁ /n	C2/c
group												
a/ Å	9.8760(7.9181(14.2039	7.6445(7.4865(6.1935(9.1202(8.8433(11.6821	9.8354(8.5381(29.718(
	6)	3)	(16)	2)	3)	2)	5)	2)	(12)	18)	3)	3)
b/ Å	5.5764(7.7541(6.7783(10.0532	7.5363(6.8408(12.7387	23.1800	12.4196	7.6469(9.4320(6.7980(
	3)	2)	8)	(2)	3)	3)	(6)	(5)	(13)	14)	4)	7)
c/ Å	12.5720	10.7240	16.7399	12.1654	14.9763	21.6753	8.0686(10.4639	15.6230	46.916(13.8114	11.6656
	(7)	(4)	(19)	(3)	(6)	(8)	4)	(2)	(16)	9)	(5)	(12)
α(°)	90	90	90	68.8020	87.392(90.4550	90	90	99.412(90	90	90
				(10)	2)	(10)			7)			
β(°)	101.134	99.0150	106.824	87.4870	86.354(93.3320	111.388	108.428	94.062(90.805(95.640(111.369
	(3)	(10)	(5)	(10)	2)	(10)	(2)	0(10)	7)	11)	2)	(7)
γ(°)	90	90	90	84.9240	65.8810	108.233	90	90	94.877(90	90	90
				(10)	(10)	0(10)			7)			
Volume	679.34(650.30(1542.7(868.18(769.47(870.44(872.85(2034.98	2219.8(3528.2(1106.87	2194.7(
(Å ³)	7)	4)	3)	4)	5)	6)	8)	(8)	4)	11)	(7)	4)
Z	2	2	4	2	2	2	2	4	4	4	2	4
Dc	1.859	1.956	1.738	1.651	1.742	1.769	1.630	1.493	1.450	1.285	1.573	1.654
(Mg/m ³)												
μ (mm ⁻¹)	1.446	1.895	1.436	1.282	12.150	1.294	1.128	0.973	0.896	0.584	0.906	0.930
F(000)	392	384	824	444	412	476	448	964	900	1480	544	1144
Reflections	1212	4439	92930	12452	8179	23712	6294	29964	23581	124602	15774	15126
collected												
Data/Restra	1212 / 1	1147 / 0	3110 / 0	3770 / 0	2329 / 0	3795 / 0	1908 / 0	4436 / 0	9199 / 0	7438 / 0	2411 / 0	2393 / 0
ints/Parame	/ 113	/ 88	/ 199	/ 217	/ 208	/ 236	/ 116	/ 246	/ 527	/ 390	/ 151	/ 151
ters												
GOF on F ²	1.224	1.169	1.125	1.055	1.069	0.965	1.366	1.076	1.200	1.071	0.959	1.026
R1 (on F_o^2 ,	0.0571	0.0223	0.0383	0.0301	0.0328	0.0335	0.0394	0.0355	0.0775	0.1036	0.0299	0.0305
$I > 2\sigma(I)$												
wR2 (on	0.1645	0.0612	0.0819	0.0747	0.0913	0.0814	0.1122	0.1011	0.2039	0.2527	0.0757	0.0807
$F_{o}^{2}, I >$												
2σ(I))												
R1 (all	0.0759	0.0228	0.0396	0.0308	0.0335	0.0363	0.0405	0.0387	0.1079	0.1584	0.0304	0.0317
data)												
wR2 (all	0.1743	0.0620	0.0825	0.0754	0.0921	0.0846	0.1133	0.1048	0.2221	0.2955	0.0765	0.0816
data)												

Table S1 Crystal data and refinement parameters of compounds 2-13

Figure S37 The packing diagrams with intermolecular hydrogen bonding interactions (blue dash lines) of 2

Figure S38 The packing diagrams with intermolecular hydrogen bonding interactions (blue dash lines) of 4

Figure S39 The packing diagrams with intermolecular hydrogen bonding interactions (blue dash lines) of 5

Figure S40 The packing diagrams with intermolecular hydrogen bonding interactions (blue dash lines) of 6

Figure S41 The packing diagrams with intermolecular hydrogen bonding interactions (blue dash lines) of 7

Figure S42 The packing diagrams with intermolecular hydrogen bonding interactions (blue dash lines) of 8

Figure S43 The packing diagrams with intermolecular hydrogen bonding interactions (blue dash lines) of 9

Figure S44 The packing diagrams with intermolecular hydrogen bonding interactions (blue dash lines) of 10

Figure S45 The packing diagrams with intermolecular hydrogen bonding interactions (blue dash lines) of 11

Figure S46 The packing diagrams with intermolecular hydrogen bonding interactions (blue dash lines) of 12

Figure S47 The packing diagrams with intermolecular hydrogen bonding interactions (blue dash lines) of 13

Figure S48 Cyclic voltammograms of compounds **3-13** (10⁻³ M) in acetonitrile/0.1 M tetra-nbutylammonium hexafluorophosphate (TBAPF₆)

compound	$E_{pc}(V)$	E _{pa} (V)	E°' (V)	compound	$E_{pc}(V)$	$E_{pa}(V)$	E°' (V)
3	0.798	-	-	8	0.573	0.591	0.582
4	0.697	-	-	9	0.541	0.587	0.564
5	0.689	-	-	10	0.545	0.591	0.568
6	0.710	-	-	11	0.569	0.623	0.596
7	0.711	-	-	12	0.551	0.625	0.588
				13	0.554	0.582	0.568

 Table S2 Electrochemical data for compounds 3-13

Cyclic voltammograms were obtained at 298 K using a standard three electrode cell and electrochemical analyzer BAS 100B from Bioanalytical systems. The sample concentration were 10^{-3} M in acetronitrile (ACN) in the presence of 0.1 M tetra-n-butylammonium hexafluorophosphate (TBAPF₆) as a supporting electrolyte. A gold working electrode (planar circular area 0.79 mm²), a silver wire pseudo-reference electrode, a platinum wire auxiliary electrode, and ferrocene internal

standard were used in the measurement. The working electrode was polished with 0.05 μ m alumina on a polish pad. The electrode was rinsed with ethanol after each polishing and dried with a Kimwipe. The scan rate for all measurement was 100 mV/s. Approximated formal potentials for a reversible redox couples (E^{o'}= [E_{pc} + E_{pa}]/2), and E_{pc} in case of irreversible process, were all referenced against ferrocene/ferrocenium couple (Fc/Fc⁺).¹

Reference

1. R. R. Gagné, C. A. Koval, and G. C. Lisensky, Inorg. Chem., 1980, 19, 2854-2855.