Supporting Information

A postsynthetically modified MOFs hybrid as a ratiometric fluorescent sensor for anions recognition and detection

Xiao Lian, Bing Yan*

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China

Fig. S1 Schematic of synthesis of MIL-125(Ti)-AM-Eu. The solvent molecules (include DMF and H_2O) and three nitrates for balance charge which could coordinate with Eu(III) were omitted for simplicity.

Scheme S1 The structure and typical coordination environment of MIL-125(Ti)-NH₂.

S4800 3 OKV 8 9mm x25 OK SE(M) 5/9/2016 200mm S4800 3 OKV 8 8mm x35 OK SE(M) 5/9/2016 200mm S4800 3 OKV 9 9mm x22

Fig. S3 Energy dispersive analysis by X-rays (EDX) spectroscopy of MIL-125(Ti)-NH₂.

Fig. S4 The N₂ adsorption–desorption isotherms of MIL-125(Ti)-NH₂, MIL-125(Ti)-AM and MIL- 125(Ti)-AM-Eu.

Fig. S5 Thermal gravimetric analysis (TGA) curves of MIL-125(Ti)-NH₂ and MIL-125(Ti)-AM-Eu.

Fig. S6 The EDX-Mapping images of MIL-125(Ti)-AM-Eu for different elements (C, O, N, Ti, Eu).

Fig. S7 (a) XPS spectra of MIL-125(Ti)-AM-Eu (blue) and $Eu(NO_3)_3$ ·6H₂O (red) for Eu 3d and Eu 4d; XPS spectra of MIL-125(Ti)-AM (black) and MIL-125(Ti)-AM-Eu (red): (b) O 1s and (c) N 1s.

Fig. S8 (a) The emission spectra of MIL-125(Ti)-AM-Eu immersed in PO_4^{3-} solvents with different concentrations from 0 μ M to 1000 μ M; (b) the plot of the intensity ratio of ${}^5D_0 \rightarrow {}^7F_2$ transition of Eu³⁺ and the ligand emission (I_U/I_{Eu}) as a function of comcentration (μ M) of PO_4^{3-} .

Fig. S9 (a) The emission spectra of MIL-125(Ti)-AM-Eu immersed in $C_2O_4^{2-}$ solvents with different concentrations from 0 μ M to 1000 μ M; (b) the plot of the intensity ratio of ${}^5D_0 \rightarrow {}^7F_2$ transition of Eu³⁺ and the ligand emission (I_U/I_{EU}) as a function of comcentration (μ M) of $C_2O_4^{2-}$.

Fig. S10 The luminescence decay times (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$) of MIL-125(Ti)-AM-Eu after the adsorption of different anions. The excitation wavelength is 255 nm.

Fig. S11 The PXRD patterns of the various anions incorporated MIL-125-AM-Eu.

Table S1 The ICP-MS results of MIL-125-AM-Eu.

Compound	Ti (ppm)	N (ppm)	Eu (ppm)
MIL-125-AM-Eu	15.81	6.99	3.23

Table S2 Responses of the luminescence decay times and quantum yield of anions coalescent MIL-125(Ti)-AM-Eu.

Anions	Lifetimes (µs)	Quantum Yield
NO ₃ -	2209	23.3%
SO4 ²⁻	1957	22.1%
SO3 ²⁻	1431	9.3%
PO4 ³⁻	1439	8.35%
HPO ₃ ²⁻	1630	18.5%
CIO ⁻	1933	28.1%
CO32-	1765	15.7%
HCO ₃ -	1658	13.6%
AcO ⁻	2047	32.5%
C ₂ O ₄ ²⁻	1456	11.5%