Electronic supplementary information (ESI)

Three powerful dinuclear metal-organic catalysts for converting

CO₂ into organic carbonates

Dan Zhao, Xiao-Hui Liu, Zhuang-Zhi Shi, Chen-Dan Zhu, Yue Zhao, Peng Wang and Wei-Yin Sun*

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China. E-mail: <u>sunwy@nju.edu.cn</u>

Table of Contents

Experimental section
Structures of the organic ligands HL, L2 and L3
Crystallographic data and structure refinements
Power X-ray diffraction (PXRD)
Figures of HPLC
Characterization data of compoundsS7
Copies of ¹ H NMR, ¹³ C NMR

Experimental section

Structure of the organic ligands HL, L2 and L3:

Chart S1 The organic ligand HL.

Chart S2 The structure of L2.

Chart S3 The structure of L3.

	L3-Zn	(R)-2a	(S)-2a	
formula	C ₁₉ H ₃₈ N ₃ O ₇ Cl Zn	C ₉ H ₈ O ₃	C ₉ H ₈ O ₃	
fw	521.34	164.15	164.15	
crystal system	Monoclinic	orthorhombic	Orthorhombic	
space group	<i>P</i> 2 ₁	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	
<i>T</i> (K)	293(2)	173(2)	173(2)	
a (Å)	9.7985(8)	6.1207(5)	6.1196(4)	
<i>b</i> (Å)	13.1054(9)	7.5850(6)	7.5799(5)	
<i>c</i> (Å)	9.8329(8)	16.9844(14)	16.9823(12)	
<i>β</i> ()	97.233(3)	90	90	
$V(\text{\AA}^3)$	1252.63(17)	788.51(11)	787.74(9)	
Ζ	2	4	4	
$D_c (\mathrm{g \ cm}^{-3})$	1.382	1.383	1.384	
<i>F</i> (000)	552	344	344	
θ for data collection ()	2.60 - 25.00	6.39 - 65.50	5.21 - 64.97	
R_1^a , $[I > 2\sigma(I)]$	0.0677	0.0255	0.0262	
$wR_2^{\ b} \left[I > 2\sigma \left(I \right) \right]$	0.1872	0.0676	0.0667	
GOF	1.077	1.079	1.065	
$a R_1 = \sum \ F_0\ - \ F_c\ / \sum$	$ F_0 $. ^b $wR_2 = \{\sum [w(F_0^2 - F_0^2)]$	$(2)^{2}/\sum[w(F_{0}^{2})^{2}]^{1/2}$		

Crystallographic data and structure refinements:

Table S1 Crystallographic data for L3-Zn, (*R*)-2a and (*S*)-2a

Power X-ray diffraction (PXRD)

HPLC

Styrene oxide was isolated as a colorless solid by flash chromatography using petroleum hexane/EtOAc (5:1) as eluent. $R_f = 0.41$; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.48 (m, 3H), 7.34-7.39 (m, 2H), 5.68 (t, J = 8.0 1H), 4.80 (t, J = 8.0 1H), 4.35 (t, J = 8.0 1H); The enantiomeric excess was determined by chiral HPLC using a Chiralcel OD column (4.6 mm x 250 mml) with hexane/isopropanol (90:10) as eluent and a flow rate of 1.0 mL/min. t_R=21.05 min, t_S=26.53 min. Detection wavelength: 220 nm.

Figure S2 The figures of HPLC

Characterization data of compounds

4-phenyl-1,3-dioxolan-2-one 2a

 $R_f = 0.7$ (EA/Hexane = 1:5), Yield 79%, colorless crystalline. ¹H NMR (300 MHz, CDCl₃): δ 7.49-7.42 (m, 3H), 7.40-7.33 (m, 2H), 5.68 (t, *J* = 8.1 Hz, 1H), 4.81(t, *J* = 8.4 Hz, 1H), 4.35 (dd, *J* = 8.1 Hz, 8.7 Hz, 1H) ppm; ¹³C

NMR (100 MHz, CDCl₃): δ 154.89, 135.82, 129.74, 129.24, 125.91, 78.03, 71.20 ppm. See also: J. Melendez, M. North and P. Villuendas, *Chem. Commun.*, 2009, **18**, 2577.

4-(4-fluorophenyl)-1,3-dioxolan-2-one 2b

R_f = 0.6 (EA/Hexane = 1:6), Yield 80%, white solid. ¹H NMR (300 MHz, CDCl₃): δ 7.44-7.31 (m, 2H), 7.20-7.09 (m, 2H), 5.67 (t, J = 8.0 Hz, 1H), 4.80 (t, J = 8.4 Hz, 1H), 4.33 (dd, J = 8.7 Hz, 7.9 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 163.37 (d, J = 248.0 Hz), 154.65, 131.62 (d,

J = 3.0 Hz), 128.09, 128.01, 116.45, 116.23, 77.45, 71.11 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ -110.97 ppm. See also: C. William, H. Ross W, N. Michael and P. Riccardo, *Chem. Eur.* J., 2010, **16**, 6828.

4-(4-chlorophenyl)-1,3-dioxolan-2-one 2c

^S**O** $R_f = 0.8$ (EA/Hexane = 1:3), Yield 80%, white solid. ¹H NMR (300 MHz, CDCl₃): δ 7.48-7.38 (m, 2H), 7.37-7.28 (m, 2H), 5.66 (t, *J* = 8.0 Hz, 1H), 4.81 (t, *J* = 8.4 Hz, 1H), 4.31 (dd, *J* = 8.7 Hz, 7.8 Hz, 1H) ppm; ¹³C

NMR (100 MHz, CDCl₃): δ 154.52, 135.79, 134.29, 129.52, 127.26, 77.24, 71.00 ppm.

4-(4-bromophenyl)-1,3-dioxolan-2-one 2d

 $R_f = 0.7$ (EA/Hexane = 1:5), Yield 78%, white solid. ¹H NMR (300 MHz, CDCl₃): δ 7.62-7.53 (m, 2H), 7.29-7.20 (m, 2H), 5.64 (t, *J* = 8.0 Hz, 1H), 4.80 (t, *J* = 8.4 Hz, 1H), 4.30 (dd, *J* = 8.7 Hz, 7.7 Hz, 1H) ppm; ¹³C

NMR (100 MHz, CDCl₃): δ 154.50, 134.82, 132.48, 127.48, 123.92, 77.25, 70.93 ppm.

4-(4-tert-butylphenyl)-1,3-dioxolan-2-one 2e

4.78 (t, J = 8.4 Hz, 1H), 4.36 (dd, J = 8.6 Hz, 8.0 Hz, 1H), 1.33 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 154.91, 153.11, 132.64, 126.18, 125.83, 78.05, 71.11, 34.78, 31.22 ppm. HRMS (EI) m/z calcd for C₁₃H₁₆O₃ [M+Na]⁺: 243.0997; found: 243.2875.

4-p-tolyl-1,3-dioxolan-2-one 2f

NMR (100 MHz, CDCl₃): δ 154.96, 139.87, 132.72, 129.87, 126.03, 78.14, 71.20 ppm. See also: J. Melendez, M. North and P. Villuendas, *Chem. Commun.*, 2009, **18**, 2577.

4-(4-methoxyphenyl)-1,3-dioxolan-2-one **2g**

o $R_f = 0.7$ (EA/Hexane = 1:10), Yield 76%, yellow solid. ¹H NMR (300 MHz, CDCl₃): δ 7.34-7.27 (m, 2H), 6.99-6.92 (m, 2H), 5.62 (t, *J* = 8.1 Hz, 1H), 4.75 (t, *J* = 8.4 Hz, 1H), 4.35 (dd, *J* = 8.7 Hz, 8.1 Hz, 3H),

3.83 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 160.74, 154.90, 127.81, 127.40, 114.59, 78.17, 71.11, 55.41 ppm. HRMS (EI) m/z calcd for C₁₀H₁₀O₄ [M+Na]⁺: 217.0477; found: 217.0472.

4-(4-(trifluoromethyl)phenyl)-1,3-dioxolan-2-one **2h**

MeO

 $R_f = 0.7$ (EA/Hexane = 1:5), Yield 72%, light yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.7-7.56 (m, 3H), 7.54-7.41 (m, 1H), 6.11-5.93 (m, 1H), 4.81 (td, J = 8.7 Hz, 1.3 Hz, 1H), 4.14(dd, J = 8.8 Hz, 7.2 Hz, 1H) ppm;

¹³C NMR (100 MHz, CDCl₃): δ 154.68, 139.98, 131.56 (q, J = 32.5 Hz), 126.20, 126.16, 126.13, 126.09, 123.71 (q, J = 270.7 Hz), 77.06, 70.98 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.96 ppm. HRMS (EI) m/z calcd for C₁₀H₇F₃O₃ [M+Na]⁺: 255.0245; found: 255.0240.

4-m-tolyl-1,3-dioxolan-2-one 2i

$$\begin{split} &R_f = 0.6 \text{ (EA/Hexane} = 1:8), \text{ Yield 84\%, light yellow oil. }^1\text{H NMR (400 MHz, CDCl_3): } \delta \ 7.35\text{-}7.05 \ (m, \ 4\text{H}), \ 5.70\text{-}5.54 \ (m, \ 1\text{H}), \ 4.84\text{-}4.64 \ (m, \ 1\text{H}), \\ &4.35\text{-}4.13 \ (m, \ 1\text{H}), \ 2.21 \ (s, \ 3\text{H}) \ \text{ppm;} \ ^{13}\text{C NMR (100 MHz, CDCl_3): } \delta \ 155\text{.}18, \\ &139.01, \ 136.07, \ 130.32, \ 129.02, \ 126.70, \ 123.17, \ 78.17, \ 71.23, \ 21.23 \ \text{ppm.} \end{split}$$

HRMS (EI) m/z calcd for $C_{10}H_{10}O_3$ [M+Na]⁺: 201.0528; found: 201.0523.

4-(3-methoxyphenyl)-1,3-dioxolan-2-one 2j

137.77, 130.03, 118.45, 114.81, 111.98,77.63, 70.77, 55.11 ppm. See also: C. William, W, H. Ross, N. Michael and P. Riccardo, *Chem. Eur. J.*, 2010, **16**, 6828.

4-(3-(trifluoromethyl)phenyl)-1,3-dioxolan-2-one 2k

 $\mathbf{R}_{\rm f}$ = 0.7 (EA/Hexane = 1:5), Yield 74%, light yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.70-7.45 (m, 4H), 5.77 (t, *J* = 8.0 Hz, 1H), 4.92-4.78 (m, 1H), 4.37-4.20 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 154.75, 137.13, 131.29 (q, *J* = 32.4 Hz), 129.88, 129.31, 126.31 (q, *J* = 3.7 Hz), 123.72 (q, *J*

= 270.7 Hz), 122.76 (q, J = 3.7 Hz), 77.52, 71.01 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.87 ppm. HRMS (EI) m/z calcd for C₁₀H₇F₃O₃ [M+Na]⁺: 255.0245; found: 255.0241.

4-o-tolyl-1,3-dioxolan-2-one **2l**

CF₃

 $\mathbf{R}_{\rm f} = 0.6 \text{ (EA/Hexane} = 1:8), \text{ Yield 64\%, light yellow oil. }^{1}\text{H NMR (300 MHz, CDCl_3): } \delta 7.49-7.03 (m, 4H), 5.86 (td,$ *J*= 8.0 Hz, 6.8Hz, 3.1Hz, 1H), 4.79 (tdd,*J* $= 8.4 Hz, 3.2 Hz, 1.6 Hz, 1H), 4.35-4.09 (m, 1H), 2.27 (s, 3H) ppm; <math>^{13}\text{C NMR}$ (100 MHz, CDCl_3): δ 155.25, 135.03, 134.33, 131.01, 129.18, 126.72, 124.69, 75.66, 70.46, 18.84 ppm. HRMS (EI) m/z calcd for C₁₀H₁₀O₃ [M+Na]⁺: 201.0528; found: 201.0524.

4-(2-methoxyphenyl)-1,3-dioxolan-2-one **2m**

 $\begin{array}{c} \textbf{O} \\ \textbf{O} \\ \textbf{O} \\ \textbf{O} \\ \textbf{O} \\ \textbf{Me} \end{array} \begin{array}{c} \textbf{R}_{\rm f} = 0.7 \ (\text{EA/Hexane} = 1:10), \ \text{Yield} \ 78\%, \ \text{yellow oil.} \ ^{1}\text{H} \ \text{NMR} \ (400 \ \text{MHz}, \\ \text{CDCl}_{3}): \ \delta \ 7.40\text{-}7.25 \ (\text{m}, \ 2\text{H}), \ 7.00\text{-}6.87 \ (\text{m}, \ 2\text{H}), \ 5.75 \ (\text{t}, \ J = 7.8 \ \text{Hz}, \ 1\text{H}), \\ 4.76 \ (\text{t}, \ J = 8.5 \ \text{Hz}, \ 1\text{H}), \ 4.21 \ (\text{dd}, \ J = 8.4 \ \text{Hz}, \ 7.1 \ \text{Hz}, \ 1\text{H}), \ 3.79 \ (\text{s}, \ 3\text{H}) \ \text{ppm}; \end{array}$

¹³C NMR (100 MHz, CDCl₃): δ 156.50, 155.37, 130.53, 126.51, 124.71, 120.66, 110.91, 75.23, 70.45, 55.48 ppm. HRMS (EI) m/z calcd for $C_{10}H_{10}O_4$ [M+Na]⁺: 217.0477; found: 217.0473.

4-(2-(trifluoromethyl)phenyl)-1,3-dioxolan-2-one 2n

R_f = 0.7 (EA/Hexane = 1:5), Yield 31%, light yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.75-7.40 (m, 4H), 6.03 (m, 1H), 4.88-4.73 (m, 1H), 4.14 (dd, J = 8.8 Hz, 7.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 154.60, 135.01,

133.09, 129.34, 126.78(d, J = 31.0 Hz), 126.28 (q, J = 6.1 Hz), 125.86, 123.89 (q, J = 271.1 Hz), 73.88 (q, J = 2.8 Hz), 71.45 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ -58.93 ppm. HRMS (EI) m/z calcd for C₁₀H₇F₃O₃ [M+Na]⁺: 255.0245; found: 255.0242.

4-(naphthalen-1-yl)-1,3-dioxolan-2-one 20

 $R_f = 0.7$ (EA/Hexane = 1:5), Yield 76%, brown yellow solid. ¹H NMR (300 MHz, CDCl₃): δ 8.02-7.87 (m, 2H), 7.75-7.47 (m, 5H), 6.42 (t, J = 7.8 Hz, 1H), 5.06 (t, J = 8.4 Hz, 1H), 4.39 (dd, J = 8.5 Hz, 7.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 154.82, 133.81, 131.72, 129.75, 129.47, 129.20, 127.21,

126.37, 125.50, 122.33, 121.54, 75.55, 70.79 ppm. HRMS (EI) m/z calcd for $C_{13}H_{10}O_3$ [M+Na]⁺: 237.0528; found: 237.0523.

hexahydrobenzo[d]-1,3-dioxolan-2-one 2p

 R_f = 0.6 (EA/Hexane = 1:10), Yield 61%, brown yellow oil.¹H NMR (400 MHz, CDCl₃) δ 5.05 (m, 2H), 2.04 (m, 2H), 1.72 (m, 4H) ppm ¹³C NMR (100 MHz, CDCl₃) δ 155.36, 81.75, 33.12, 21.46 ppm. See also: C. J. Whiteoak, N. Kielland,

V. Laserna, E. C. Escudero-Adán, E. Martin and A. W. Kleij, J. Am. Chem. Soc. 2013, 135, 1228.

5-methylhexahydrobenzo[d]-1,3-dioxolan-2-one 2q

 R_f = 0.7 (EA/Hexane = 1:8), Yield 52%, brown yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 4.71 (m, 4H), 2.34 (m, 1H), 2.27 (m, 1H), 2.14 (m, 2H), 1.77 (m, 3H), 1.66 (m, 3H), 1.38 (m, 2H), 1.22 (m, 2H), 1.00 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 155.24, 155.21, 76.49, 75.86, 75.60, 75.24, 36.32, 34.40, 28.36, 27.86, 27.42, 27.17, 26.04, 25.10, 21.87, 21.34 ppm. See also: V.

Laserna, G. Fiorani, C. J. Whiteoak, E. Martin, E. Escudero-Adán and A. W. Kleij, Angew. Chem. Int. Ed., 2014, 53, 10416.

¹H- and ¹³C-NMR spectra

4-(4-tert-butylphenyl)-1,3-dioxolan-2-one **2e**

4-(4-methoxyphenyl)-1,3-dioxolan-2-one **2g**

4-(4-(trifluoromethyl)phenyl)-1,3-dioxolan-2-one 2h

120 115 110 f1 (ppm)

4-(3-(trifluoromethyl)phenyl)-1,3-dioxolan-2-one 2k

4-(2-(trifluoromethyl)phenyl)-1,3-dioxolan-2-one **2n**

4-(naphthalen-1-yl)-1,3-dioxolan-2-one **20**

