Supporting Information

Synthesis, Structure, and Spin Crossover Above Room Temperature of a Mononuclear and Related Dinuclear Double Helicate Iron(II) Complexes

Hiroaki Hagiwara,*^a Tomoko Tanaka^a and Shiori Hora^b

^a Department of Chemistry, Faculty of Education, Gifu University, Yanagido 1-1, Gifu 501-1193,

Japan

^b Graduate School of Education, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan

Table of Contents

Fig. S1 TG/DTA curves of $[Fe^{II}(L1^{Me})_2](PF_6)_2$ (1)	S2
Fig. S2 TG/DTA curves of $[Fe^{II}_2(L2^{C2})_2](PF_6)_4 \cdot 5H_2O \cdot MeCN$ (2)	S2
Fig. S3 The magnetic behaviour of desolvated sample 2' in the form of the $\chi_{M}Tvs. T$	S3
plots.	
Fig. S4 Heterochiral 2D structure of [Fe ^{II} (L1 ^{Me}) ₂](PF ₆) ₂ (1) at 150 K	S3
Fig. S5 Heterochiral 2D layer of [Fe ^{II} ₂ (L2 ^{C2}) ₂](PF ₆) ₄ ·5H ₂ O·MeCN (2) at 120 K	S4
Fig. S6 PXRD patterns of 2 at room temperature in different states	S4
Table S1 X-ray Crystallographic Data for $[Fe^{II}(L1^{Me})_2](PF_6)_2$ (1) at 150 and 448 K	C F
and [Fe ^{ll} ₂ (L2 ^{C2}) ₂](PF ₆) ₄ ·5H ₂ O·MeCN (2) at 120 K	35
Table S2 Relevant coordination bond lengths (Å) and angles (°) for $[Fe^{II}(L1^{Me})_2](PF_6)_2$	56
(1) at 150 and 448 K and [Fe ^{ll} ₂ (L2 ^{C2}) ₂](PF ₆) ₄ ·5H ₂ O·MeCN (2) at 120 K	30
Table S3 Intermolecular contacts (Å) for $[Fe^{II}(L1^{Me})_2](PF_6)_2$ (1) at 150 and 448 K	67
and [Fe ^{ll} ₂ (L2 ^{C2}) ₂](PF ₆) ₄ ·5H ₂ O·MeCN (2) at 120 K	57
References	S7

Fig. S1 TG/DTA curves of $[Fe^{II}(L1^{Me})_2](PF_6)_2$ (1).

Fig. S2 TG/DTA curves of $[Fe^{II}_2(L2^{C2})_2](PF_6)_4 \cdot 5H_2O \cdot MeCN$ (2).

Fig. S3 The magnetic behaviour of desolvated sample **2'** in the form of the $\chi_M T vs. T$ plots. **2'** was warmed from 300 to 470 K (filled triangles; red), and then cooled from 470 to 300 K (filled inverted triangles; blue) at a sweep rate of 1 K min⁻¹.

Fig. S4 Heterochiral 2D structure of $[Fe^{II}(L1^{Me})_2](PF_6)_2$ (**1**) at 150 K. Δ - $[Fe^{II}(L1^{Me})_2]^{2+}$ (green) and Λ - $[Fe^{II}(L1^{Me})_2]^{2+}$ (red) enantiomers are linked alternately *via* CH…N hydrogen bonds (blue dotted line) and enantiomers of same chirality are not directly connected in a 2D layer.

Fig. S5 Heterochiral 2D layer of $[Fe^{II}_2(L2^{C2})_2](PF_6)_4 \cdot 5H_2O \cdot MeCN$ (**2**) at 120 K. Green and red colours indicate $\Delta - \Delta - [Fe^{II}_2(L2^{C2})_2]^{4+}$ and $\Lambda - \Lambda - [Fe^{II}_2(L2^{C2})_2]^{4+}$ enantiomers, respectively. Homochiral cations are connected by CH/π (blue dotted line) interactions along the *c*-axis $(\Delta - \Delta \cdots \Delta - \Delta \cdots \Delta - \Delta \cdots \cdots \Lambda - \Lambda \cdots \Lambda - \Lambda \cdots)$ and cations of opposite chiral pair are linked alternately *via* $\pi - \pi$ interactions (green dotted line) along the (a+c)/2 direction $(\Delta - \Delta \cdots \Lambda - \Lambda \cdots \Delta - \Delta \cdots \Lambda - \Lambda \cdots)$.

Fig. S6 PXRD patterns of **2** at room temperature in different states: (a) simulated from the SQUEEZE-applied single crystal X-ray data at 120 K; (b) as-synthesized **2**; (c) **2** after SQUID measurements; (d) desolvated **2'** before SQUID measurements.

Complex	Mononuclear 1		Dinuclear 2 ª	
Temperature	150 K	448 K	120 К	
Formula	C ₂₂ H	$I_{26}N_{10}P_2F_{12}Fe$	$C_{46}H_{51}N_{21}P_3F_{18}Fe_2$	
Formula weight		776.32	1444.68	
Crystal system	Monoclinic		Monoclinic	
Space group	P21/a		C2/c	
<i>a,</i> Å	12.1982(16)	12.647(3)	30.932(8)	
<i>b,</i> Å	21.725(3)	22.117(4)	20.020(5)	
<i>c,</i> Å	12.2925(16)	12.703(4)	11.614(3)	
eta, deg	118.8092(12)	119.722(2)	107.907(3)	
<i>V</i> , Å ³	2854.4(6)	3085.8(13)	6844(3)	
Ζ	4	4	4	
Т, К	150(2)	448(2)	120 K(2)	
d_{calcd} , g cm ⁻³	1.806	1.671	1.402	
μ , mm ⁻¹	0.756	0.699	0.591	
R1 ^b (I>2sigma(I))	0.0404	0.0930	0.0956	
wR ₂ ^c (I>2sigma(I))	0.0967	0.2253	0.2032	
R1 ^b (all data)	0.0442	0.1291	0.1358	
wR_2^c (all data)	0.0998	0.2449	0.2215	
S	1.064	1.434	1.001	
CCDC number	1491569	1491570	1491571	

Table S1 X-ray Crystallographic Data for $[Fe^{II}(L1^{Me})_2](PF_6)_2$ (1) at 150 and 448 K and $[Fe^{II}_2(L2^{C2})_2](PF_6)_4$ ·5H₂O·MeCN (2) at 120 K

^a The PLATON SQUEEZE program¹ was used to treat regions having highly disordered solvent molecules and counter anions which could not be sensibly modelled in terms of atomic sites. Available void volume is 1386.1 Å³. 473 electrons per unit cell were located and these were assigned to 1 PF₆ and 5 H₂O molecules per complex [473/4 = 119 e per complex; PF₆ (69) + 5 H₂O (10) = 119 electrons].

^b
$$R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$$
.

^c wR₂ = $[\Sigma w(|Fo^2| - |Fc^2|)^2 / \Sigma w |Fo^2|^2]^{1/2}$.

Complex	Mononuclear 1		Dinuclear 2			
Temperature	150 K	448 K	120 K			
	Bond Lengths (Å)					
Fe(1)-N(1)	2.0170(16)	2.141(4)	2.017(7)			
Fe(1)-N(2)	1.9718(16)	2.085(4)	1.953(5)			
Fe(1)-N(3)	1.9915(16)	2.140(4)	1.926(5)			
Fe(1)-N(6) ⁱ	2.0196(17)	2.107(5)	2.029(4)			
Fe(1)-N(7) ⁱ	1.9814(17)	2.098(4)	1.952(6)			
Fe(1)-N(8) ⁱ	1.9954(16)	2.167(4)	1.949(5)			
Average Fe-N	1.996	2.123	1.971			
	Bond Angles (deg)					
N(1)-Fe-N(2)	91.04(6)	88.23(16)	91.8(2)			
N(1)-Fe-N(3)	171.42(7)	165.23(16)	172.8(2)			
N(1)-Fe-N(6) ⁱ	88.80(7)	89.68(17)	90.6(2)			
N(1)-Fe-N(7) ⁱ	93.40(6)	97.69(16)	98.0(3)			
N(1)-Fe-N(8) ⁱ	88.54(7)	88.47(16)	91.7(2)			
N(2)-Fe-N(3)	80.43(7)	77.07(15)	81.14(19)			
N(2)-Fe-N(6) ⁱ	95.73(7)	101.69(17)	96.29(18)			
N(2)-Fe-N(7) ⁱ	171.84(7)	167.32(18)	167.5(3)			
N(2)-Fe-N(8) ⁱ	93.52(7)	92.73(16)	91.94(18)			
N(3)-Fe-N(6) ⁱ	93.00(7)	94.62(16)	88.89(19)			
N(3)-Fe-N(7) ⁱ	94.95(6)	96.47(15)	89.2(2)			
N(3)-Fe-N(8) ⁱ	90.99(7)	90.81(15)	89.9(2)			
N(6) ⁱ -Fe-N(7) ⁱ	91.21(7)	89.60(18)	91.4(2)			
N(6) ⁱ -Fe-N(8) ⁱ	170.42(7)	165.40(16)	171.4(2)			
N(7) ⁱ -Fe-N(8) ⁱ	79.77(7)	76.31(18)	80.1(2)			
\varSigma^{a}	46.3	64.7	42.5			
\varTheta^{\flat}	132.8	208.8	133.7			

Table S2 Relevant coordination bond lengths (Å) and angles (°) for $[Fe^{II}(L1^{Me})_2](PF_6)_2$ (1) at 150 and 448 K and $[Fe^{II}_2(L2^{C2})_2](PF_6)_4 \cdot 5H_2O \cdot MeCN$ (2) at 120 K

^a Σ = the sum of $|90 - \varphi|$ for the 12 *cis* N-Fe-N angles in the octahedral coordination sphere.² ^b Θ = the sum of $|60 - \theta|$ for the 24 N-Fe-N angles describing the trigonal twist angles.³ Symmetry operation relevant only to **2**: (i), 1 - x, y, 3/2 - z.

Complex	Temp.	C-H···X or X···X	<i>d</i> (C-H)	d(H…X)	<i>d</i> (C…X)	<(C-H…X)
Mononuclear 1	150 K	C(8)-H(9)…N(9) ⁱ	0.950	2.648	3.393(2)	135.63
		C(10)-H(10)…N(9) ⁱ	0.950	2.905	3.527(3)	124.16
		C(21)-H(23)…N(4) ⁱⁱ	0.950	2.687	3.525(3)	147.47
	448 K	C(8)-H(9)…N(9) ⁱ	0.930	2.863	3.633(6)	141.02
		C(21)-H(23)…N(4) ⁱⁱ	0.930	2.735	3.601(8)	155.46
Dinuclear 2	120 K	Cg1 ^c Cg1 ⁱⁱ			3.937(4)	
		C(1)…C(4) ⁱⁱ			3.900(9)	
		C(2)…C(4) ⁱⁱ			3.676(13)	
		C(2)…C(5) ⁱⁱ			3.906(11)	
		C(3)…C(4) ⁱⁱ			3.642(14)	
		C(3)…C(5) ⁱⁱ			3.625(12)	
		C(3)…Cg1 ⁱⁱ			3.730	
		C(4)…C(4) ⁱⁱ			3.776(11)	
		C(4)…C(5) ⁱⁱ			4.010(9)	
		C(4)…Cg1 ⁱⁱ			3.604	
		C(11)-H(11)…Cg2 ^{d,iii}	0.990	3.681	3.991	101.09
		C(11)-H(12)…Cg2 ⁱⁱⁱ	0.989	3.452	3.991	116.44

Table S3 Intermolecular contacts (Å) for $[Fe^{II}(L1^{Me})_2](PF_6)_2$ (**1**) at 150 and 448 K and $[Fe^{II}_2(L2^{C2})_2](PF_6)_4 \cdot 5H_2O \cdot MeCN$ (**2**) at 120 K

^c Cg1 = Centroid of the N1-C1-C2-C3-C4-C5 ring.

^d Cg2 = Centroid of the N6-C12-C13-C14-C15-C16 ring.

Symmetry operations for **1**: (i), 1 - x, 1 - y, 1 - z; (ii), $-\frac{1}{2} + x$, $\frac{1}{2} - y$, z.

Symmetry operations for **2**: (ii), 1/2 - x, 1/2 - y, 1 - z; (iii), x, y, 1 + z.

References

- 1 A. L. Spek, Acta Cryst., 2015, C71, 9–18.
- 2 P. Guionneau, M. Marchivie, G. Bravic, J.-F. Létard and D. Chasseau, *Top. Curr. Chem.*, 2004,
 - **234**, 97–128.
- 3 M. Marchivie, P. Guionneau, J.-F. Létard and D. Chasseau, Acta Cryst., 2005, B61, 25–28.