## **Electronic Supporting Information**

## Exfoliation of WS<sub>2</sub> in Semiconducting Phase using a Group of Lithium Halides: a New Method of Li Intercalation

Arup Ghorai,<sup>1</sup> Anupam Midya<sup>1\*</sup> Rishi Maiti,<sup>2</sup> Samit K Ray<sup>2</sup>

<sup>1</sup>School of Nanoscience and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302 <sup>2</sup>Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302

Email: anupam.midya@iitkgp.ac.in



**Figure S1:** TEM images of few layer WS<sub>2</sub> flakes collected at (a) below 1000 rpm (WS<sub>2</sub> (1K), average size  $\geq$  500 nm); (b) below 2000 rpm (WS<sub>2</sub> (2K), average size  $\sim$  300 nm); (c) collected above 3000 rpm (WS<sub>2</sub> (3K), average size  $\leq$ 100 nm).



**Figure S2:** (a) Absorbance of  $WS_2$  in DMF at 640 nm and (b) its corresponding absorbance with concentration. From the fitted curve slope, absorption coefficient is 2.68 ml mg<sup>-1</sup> cm<sup>-1</sup> at 640 nm.

## Table S1

|                   | LiCl,              |  |
|-------------------|--------------------|--|
| WS2:Alkali halide |                    |  |
| (mole ratio)      | (4h sonication     |  |
|                   | at the first step) |  |
| (1:1)             | ~5.5 mg / mL       |  |
| (2:1)             | ~2 mg/ml           |  |
| (1:2)             | ~1 mg/ml           |  |
| 1:0               | 0                  |  |

 $\sigma_{sl} = \sigma_{solid} + \sigma_{liquid} - 2\left(\sqrt{\sigma_{solid}^{d} \cdot \sigma_{liquid}^{d}} + \sqrt{\sigma_{solid}^{p} \cdot \sigma_{liquid}^{p}}\right)$ 

$$=\sigma_{solid}^{\phantom{solid}}+\sigma_{solid}^{\phantom{solid}}+\sigma_{liquid}^{\phantom{solid}}+\sigma_{liquid}^{\phantom{solid}}-2\left(\sqrt{\sigma_{solid}^{\phantom{solid}}\cdot\sigma_{liquid}^{\phantom{solid}}}+\sqrt{\sigma_{solid}^{\phantom{solid}}\cdot\sigma_{liquid}^{\phantom{solid}}}\right)$$

Where  $\sigma_{solid}$  and  $\sigma_{liquid}$  are the surface tension of the solid and solvent, respectively and *p* indicates the polar component and *d* represents the dispersive component of surface tension.  $\sigma_{sl}$  is the interfacial surface tension between liquid solvent and solid. For efficient exfoliation  $\sigma_{sl}$  should be minimised.<sup>1</sup> Thus the polar and dispersive part of the surface tension played an important role in liquid phase exfoliation. Generally the solvents having surface tension value around 40 mN/m (DMF-37.1 and for Hexane-18.43 mN/m) are good exfoliating agent for exfoliation,<sup>2</sup> because those solvents have lower interfacial surface tension. The ratio of  $\sigma_{solid}^{plid}$ to  $\sigma_{solid}^{d}$  of WS<sub>2</sub> is around 0.563 and surface tension is around 40 mN/m.<sup>2</sup> The interfacial surface tension is calculated for WS<sub>2</sub> in DMF as 0.86 mN/m and that of WS<sub>2</sub> in hexane as 15.5 mN/m.

The solvents which have minimum interfacial surface energy are a good solvent for liquid exfoliation.

As we know that total surface tension  $\sigma_{solid}$  is equal to the sum of polar and dispersive components of the surface tension. So we can write

 $\sigma_{solid=} \sigma_{solid}^{d} + \sigma_{solid}^{p} \qquad (2)$ 

Now total surface tension of WS<sub>2</sub> is 40 mN/m, so we can write,

 $\sigma_{solid}^{WS2} \sigma_{solid}^{d(WS2)} + \sigma_{solid}^{p(WS2)} = 40 \dots (3)$ 

Again we know that the ratio of  $\sigma_s^p$  and  $\sigma_s^d$  of WS<sub>2</sub> is around 0.563, so

 $\sigma_{solid}^{p(WS2)} / \sigma_{solid}^{d(WS2)} = 0.563 \dots (4)$ 

From equation (2) we can calculate,

$$\sigma_{solid}^{d(WS2)} - \sigma_{solid}^{p(WS2)} = 11.18 \dots (5)$$

By solving equation (1) and (3) we get,  $\sigma_{solid}^{p(WS2)} = 14.91$  and  $\sigma_{solid}^{d(WS2)} = 25.09$ 

So using this value we calculate the interfacial surface tension of different solvents which is shown in following table S2. The exfoliation yield is also tabulated for comparison.

## Table: S2

| Solvent            | Surface<br>Tension<br>(mN/m)<br>( <sup>()</sup> ) | PolarComponentof SurfaceTension(mN/m) $(\sigma_{liquid}^{p})$ | Dispersive<br>Component<br>of Surface<br>Tension<br>(mN/m)<br>$(\sigma_{liquid}^{d})$ | Interfacial<br>Surface Tension<br>between $WS_2$<br>and solvents<br>(mN/m)<br>$(\sigma_{sl})$ | Experimental<br>Yield<br>(mg/ml)<br>LiI ,<br>30 min<br>sonication 1st<br>step |
|--------------------|---------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| DMF                | 36.50                                             | 11.30                                                         | 25.20                                                                                 | 0.26                                                                                          | 4.81                                                                          |
| EtOH               | 23.70                                             | 4.40                                                          | 19.30                                                                                 | 3.52                                                                                          | 0.18                                                                          |
| IPA:Water<br>(1:1) | 25.13                                             | 8.17                                                          | 16.96                                                                                 | 1.81                                                                                          | 1.1                                                                           |
| Water              | 72.75                                             | 50.65                                                         | 22.10                                                                                 | 10.71                                                                                         | 0                                                                             |
| Hexane             | 18.43                                             | 0                                                             | 18.43                                                                                 | 15.499                                                                                        | 0                                                                             |
| Acetone            | 23.30                                             | 16.50                                                         | 6.80                                                                                  | 5.82                                                                                          | 0                                                                             |
| NMP                | 40.79                                             | 11.58                                                         | 29.21                                                                                 | 0.59                                                                                          | 2.5                                                                           |



Figure S3: XPS Survey scan of WS<sub>2</sub> nanosheet



| Element | Wt %  | At %  |
|---------|-------|-------|
| W M     | 69.53 | 31.04 |
| S K     | 26.20 | 67.05 |
| WL      | 04.28 | 01.91 |

Figure S4: EDAX spectra of WS<sub>2</sub> nanosheet

<sup>&</sup>lt;sup>1</sup> Shen, J.; He, Y.; Wu, J.; Gao, C.; Keyshar, K.; Zhang,X.; Yang, Y.; Ye, M.; Vajtai, R.; Lou, J.; Ajayan.; P. M. Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components. *Nano Lett.* **2015**, *15*, 5449–5454.

<sup>2</sup> Cunningham, G.; Lotya, M.; Cucinotta, C. S.; Sanvito, S.; Bergin, S. D.; Menzel, R.; Shaffer, M. S. P.; Coleman, J. N. Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersibility of Exfoliated Nanosheets Varies Only Weakly between Compounds. *ACS Nano* **2012**, *6*, 3468–3480.