Supporting Information

"Synthesis of six-coordinate mono-, bis-, and tris(tetrazolato) complexes via [3+2] cycloadditions of nitriles to silicon-bound azido ligands"

Peter Portius, Martin Davis

Contents

Supporting Information
1. General experimental conditions2
2. Additional analytical data on the title compounds
Fig. S1. IR spectrum of a nujol mull of analytically pure compound 5 between NaCl windows
Fig. S2. $6.5 - 10.5$ ppm section of the ¹ H NMR spectrum of compound 5 in acetonitrile- d ₃ solution
Fig. S3. $6.5 - 10.5$ ppm section of the ¹ H NMR spectrum in acetonitrile- d_3 solution of a sample of the reaction mixture during the synthesis of complex 5
Fig. S4. $7.0 - 10.2$ ppm section of the ¹ H NMR spectrum of a mixture of compound 5 and Ph-CN
Fig. S5. 13 C ssNMR spectrum of Si(N ₃) ₂ (N ₄ C-Ph) ₂ (bpy) (5) in solid state (100 - 170 ppm expansion, top; overview, bottom)
Fig. S6. ¹⁵ N ssNMR spectrum of Si(N ₃) ₂ (N ₄ C-Ph) ₂ (bpy) (5) in solid state (chemical shifts in unified scale)
Fig. S7. ²⁹ Si ssNMR spectrum of Si(N ₃) ₂ (N ₄ C-Ph) ₂ (bpy) (5) in solid state9
Fig. S8. Kinetic traces
3. Details of the single crystal X-ray diffraction studies of compounds 4a,b, 5, 6 and 910
Table S1. Crystallographic data of crystals of compounds 4a,b , 6 , 7 and 9 11
4. Differential Scanning Calorimetry (DSC) measurements
Fig. S9. DSC of compound 4a, $[Si(N_3)_2(\kappa N(2)-mtz)_2(bpy)]$, heating rate 10 K min ⁻¹ 12
Fig. S10. DSC of compound 8, [Si(N3)(KN(2)-mtz) ₃ (bpy)], heating rate 10 K min ⁻¹ 12
Fig. S11. DSC of compound 9, $[Si(N_3)_2(\kappa N(1), N'-pytz)_2]$, heating rate 10 K min ⁻¹ 13
5. Density functional theory (DFT) calculations
5.1. $OC-6-24$ -Si(N ₃) ₂ ($ax-\kappa N(2)$ -mtz) ₂ (bpy)] (Table 4 entry a)14
5.2. $OC-6-24$ -[Si(N ₃) ₂ ($\kappa N(2)$ -mtz)($\kappa N(1)$ -mtz)(bpy)] (Table 4 entry b)16
3.3. $OC-6-32$ -[Si(N ₃) ₂ ($\kappa N(2)$ -mtz) ₂ (bpy)] (Table 4 entry c)18
5.3. $OC-6-33$ -[Si(N ₃) ₂ (κ N(2)-mtz) ₂ (bpy)] (Table 4 entry d)20
5.4. $OC-6-22-[Si(N_3)_2(\kappa^2 N, N(1)-pytz)_2]$ (Table 4 entry e)

5.5. $OC-6-32$ -[Si(N ₃) ₂ ($\kappa^2 N, N(1)$ -pytz) ₂] (Table 4 entry f)	23
5.6. $OC-6-13$ -[Si(N ₃) ₂ ($\kappa^2 N, N(1)$ -pytz) ₂] (Table 4 entry g)	25
5.7. <i>OC-6-23</i> -[Si(N ₃) ₃ (<i>κ</i> N(2)-mtz)(bpy)] (Table 4 entry h)	26
5.8. <i>OC-6-23</i> -[Si(N ₃) ₃ (<i>K</i> N(1)-mtz)(bpy)] (Table 4 entry i)	27
5.9. <i>OC-6-33</i> -[Si(N ₃) ₃ (<i>k</i> N(2)-mtz)(bpy)] (Table 4 entry j)	29
5.10. <i>OC-6-31</i> -[Si(N ₃)(<i>κ</i> N(2)-mtz) ₃ (bpy)] (Table 4 entry k)	31
5.11. OC-6-33-[Si(N ₃)($\kappa N(2)$ -mtz) ₃ (bpy)] (Table 4 entry k)	33
5.12. Transition state 4a / 4b	35
5.13. <i>OC</i> -6-22-[Si(N ₃) ₄ (bpy)] (1)	37
5.14. Calculated stick spectra	40
Fig. S12. Calculated stick spectra of $OC-6-12$ -[Si(N ₃) ₄ (bpy)], $OC-6-23$ -[Si(N ₃) ₃ (κ N(2)(bpy)] (i), $OC-6-23$ -[Si(N ₃) ₃ (κ N(2)-mtz)(bpy)] (h) and $OC-6-33$ -[Si(N ₃) ₃ (κ N(2)(bpy)] (j)	J(1)- 2)- 40
6. References	40

1. General experimental conditions

All experiments were carried out under an atmosphere of argon using Schlenk or glove box techniques. Appropriate safety precautions were adopted during all experiments involving silicon azides. The glassware was baked out in vacuo prior to use. The solvents CH₂Cl₂, MeCN, THF and hexane were obtained from Grubbs columns, stirred over CaH₂, trap-to-trap condensed and stored in ampoules. Tolunitril, benzonitrile and pyridylnitrile (Aldrich) and the deuterated solvents $MeCN-d_3$ and CDCl₃ were stirred over CaH₂ and trap-to-trap condensed prior to use. Nujol was kept dry by standing over sodium. The compounds **1a** and **1b** were obtained using published procedures.¹ C, H, N microanalyses were performed by the Elemental Analysis service of the Department of Chemistry, University of Sheffield, using a Perkin Elmer 2400 CHNS/O Series II Elemental Analyser. Melting points were determined in sealed capillary tubes under argon using a Gallenkamp 7936B melting point apparatus and are uncorrected. Positive ion current mass spectra were obtained from VG AutoSpec (GC MS EI+, calibrated against PFK, 50 < m/z < 700 Da at temperatures of *ca.* 200°C) and Waters LCT (TOF, ES+, 0.1 < m/z < 3.0 kDa) spectrometers. IR spectra were obtained from solutions in a specac^(R) transmission cell equipped with CaF_2 windows (4000 - 1200 cm⁻¹) or from capillary layers of paraffin mulls between NaCl windows (4000 – 500 cm⁻¹) using Mattson Galaxy 2020 and Bruker Tensor 27 FTIR spectrometers with a resolution of 2 cm^{-1} . The following abbreviations were used for the relative intensities and shape of the absorption bands: vs: very strong; s: strong; m: medium; w: weak; vw: very weak; br: broad. The asymmetric and symmetric vibrational modes were denoted by the subscript symbols "as" and "sym", respectively. For the IR spectra recorded in nujol mulls, only those bands with an absorption maximum exceeding 0.01 absorbance units were evaluated

and their intensities are given in parentheses relative to the main band (100%). ¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker 250 spectrometer (SF(1 H) = 249.9 MHz and SF(13 C) = 62.84 MHz) in dry and deoxygenated solvents at temperatures between 20°C and 25°C. The ¹H and ¹³C{¹H} NMR spectra were calibrated against the residual proton and natural abundance ¹³C resonances of the solvent relative to SiMe₄ (solvent acetonitrile- d_3 , chloroform-d and dichloromethane- d_2 (δ (¹H) [ppm] = 1.94, 7.26, 5.32) and the natural abundance of ¹³C in the solvent (δ (¹³C) [ppm] = 1.3 and 118.3, 77.2, 53.8). Solid state NMR spectra are referenced against adamantane (38.5 ppm) and were recorded under the following conditions: ²⁹Si (99.34 MHz) CP, magic angle spinning at 8kHz, recycle delay of 10 s contact time of 2 ms; ¹⁵N (50.67 MHz) CP, magic angle spinning at 8 kHz, recycle delay of 9 s, contact time of 2 ms; ¹³C (125.76 MHz) CP, total sideband suppression (TOSS), magic angle spinning at 8 kHz, recycle delay of 5 s, contact time of 2 ms. The following abbreviations were used for the signal multiplicities: ddd: doublet of double doublets; dd: double doublet; s: singlet. Numbering of the ring protons according to IUPAC recommendations.^[1] Suitable single crystals for the X-ray diffraction studies were obtained upon slow cooling saturated solutions from room temperature to approximately -30°C. Details of the crystallographic measurements can be found in section 4. Supplementary crystallographic data for this paper (CCDC 1493371-1493377) can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

2. Additional analytical data on the title compounds

Complex 4a. IR (Nujol, cm^{-1} , A > 0.05 in parentheses): 3126(6), 3091(12), 3071(8), 2149(73), 2122(60), 1624(13), 1615(26), 1575(13), 1568(12), 1505(13 sh), 1495(38), 1478(31 sh), 1454(100), 1356(27), 1325(58), 1240(22), 1183(20), 1165(19), 1137(27), 1077(30), 1043(19), 1026(12), 783(27), 735(30), 726(25), 706(74), 676(18), 657(13), 593(12), 578(49), 554(48), 515(45).

Complex 4b. IR (Nujol, cm⁻¹, A > 0.05 in parentheses): 3132(6), 3101(8), 3078(7), 2157(100), 2122(38), 1627(8), 1618(17), 1576(7), 1570(8), 1505(13 sh), 1498(25), 1479(20 sh), 1451(57), 1366(26 sh), 1351(21), 1316(26), 1233(8), 1179(15), 1162(12), 1151(6), 1135(7), 1110(6), 1093(8), 1071(18), 1056(6), 1044(17), 1027(12), 779(17), 733(27), 727(17), 703(21), 696(25), 683(21), 671(12), 562(47), 536(32), 518(52).

Complex *OC-6-13*-[Si(N₃)₂(κ V(2)-ptz)₂(bpy)] (5). FTIR (CH₂Cl₂, cm⁻¹) v_{as}(NN) = 2164vs, 2134w; (CH₃CN, cm⁻¹) v_{as}(NN) = 2162vs, 2132w; (THF, cm⁻¹) v_{as}(NN) = 2163vs, 2129m; (Nujol, cm⁻¹, A > 0.01 in parentheses): 3066(5), 2166(63), 2126(32), 1625(7), 1615(18), 1568(8 br), 1506(12), 1456(100), 1317(13), 1245(7), 1190(5), 1176(7), 1164(8), 1132(5), 1116(7), 1069(13), 1043(14), 791(9), 783(17), 733(30), 695(30), 586(16), 575(31), 547(29).

^{[&}lt;sup>1</sup>] Nomenclature of Organic Chemistry, J. Rigaudy, S. P. Klesney (Editors), Pergamon Press, **1979**.

Complex *OC-6-13*-[Si(N₃)₂(κ V(2)-ttz)₂(bpy)]·CH₃CN (6). FTIR (CH₂Cl₂, cm⁻¹) v_{as}(NN) = 2164vs, 2134w; (CH₃CN, cm⁻¹) v_{as}(NN) = 2162vs, 2133w; (THF, cm⁻¹) v_{as}(NN) = 2162vs, 2132w; (nujol, cm⁻¹, A > 0.05 in parentheses): v_{as}(NN) = 3129(7), 3092 (8), 3072(13), 3066(14), 3039(14), 2248(5), 2156 (100), 2127(67), 1626(9), 1617(26), 1575(9), 1569(8), 1508(11), 1456(91), 1435(29 sh), 1335(20), 1324(25), 1242(11), 1187(15), 1164 (12), 1132(10), 1117(6), 1075(16), 1045(21), 1027(9), 1006(8), 829(19), 784(25), 773(6), 760 (18), 738(32), 723(10), 694(39), 622(10), 579(58), 549(38), 509(38).

Complex *OC-6-13*-[Si(N₃)₂(κ N(2)-ptz)₂(phen)]·CH₃CN (7·CH₃CN). IR (Nujol, cm⁻¹, A > 0.05 in parentheses): 3095(9), 3068(13), 3032(11), 2250(5), 2164(95 sh), 2158(100), 2129(88), 1635(5), 1624(9), 1583(23), 1526(24), 1489(8), 1446(64), 1433(46), 1362(20 sh), 1328(20), 1247(12), 1232(11), 1209(6), 1189(16), 1149(17), 1131(9), 1114(23), 1072(6), 1040(9), 1024(11), 1006(6), 883(21), 859(31), 791(13), 757(34), 742(15 sh), 733(50), 726(67), 720(36 sh), 695(68), 660(7), 582(64), 562(48), 548(56), 540(49 sh).

Complex [Si(N₃)(mtz)₃(bpy)] (8). FTIR (CH₃CN, cm⁻¹) $v_{as}(NN) = 2159vs$; (THF, cm⁻¹) $v_{as}(NN) = 2158vs$; (py, cm⁻¹) $v_{as}(NN) = 2161vs$; IR (Nujol, cm⁻¹, A > 0.05 in parentheses): 3133(8), 3116(6), 3092(8), 3076(13 sh), 3068(17), 3051(12), 3039(11), 2158(100), 1628(15), 1617(32), 1578(15), 1568(10), 1510(39), 1505(35 sh), 1482(25), 1461(55 sh nujol), 1454(66), 1430(28), 1378(44 nujol), 1360(32), 1320(32), 1293(7), 1253(8), 1238(26), 1182(37), 1162(18), 1140(15), 1128(16), 1116(10), 1105(21), 1084(11), 1073(25), 1056(12), 1045(35), 1031(23), 1017(12), 789(28), 772(12), 733(37), 727(23), 724(23), 706(44), 700(47), 676(24), 572(72), 524(55), 508(47).

Complex *OC-6-22*-[Si(N₃)₂($\kappa^2 N(1), N'$ -pytz)₂] (9). FTIR (CH₃CN, cm⁻¹) $\nu_{as}(NN) = 2143s(br)$; (CH₂Cl₂, cm⁻¹) $\nu_{as}(NN) = 2141s(br)$, (Nujol, cm⁻¹, A > 0.10 in parentheses): 3103(15), 2164(90), 2122(65), 1631(38), 1569(10), 1543(10), 1451(100), 1408(17), 1328(27, br), 1294(20), 1162(28), 1113(20), 1094(20), 1059(51), 1050(35), 1030(16), 909(10), 802(26), 771(22), 733(40), 722(64), 682(30), 668(28), 586(52), 557(59), 531(28), 509(12).

Characteristic ¹H NMR data (250 MHz, r.t., CD₃CN, ppm) for the protons H6, H6' (bpy) and H2, H9 (phen) of the complexes studied *in situ* and of the starting complexes **1** and **2** for reference (H6,H6' and H2,H9 are isochronous, respectively): OC-6-22-[Si(N₃)₄(bpy)], $\delta = 9.40$ (2H, ddd, 5.8, 1.5, 0.8 Hz); OC-6-23-[Si(N₃)₃($\kappa N(1)$ -mtz)(bpy)], $\delta = 9.32$ (2H, pd); OC-6-23-[Si(N₃)₃($\kappa N(2)$ -mtz)(bpy)], $\delta = 9.64$ (2H, pd); OC-6-32-[Si(N₃)₂($\kappa N(2)$ -mtz)(bpy)], $\delta = 9.69$ (2H, ddd) (CDCl₃, 9.84 (2H, ddd)); OC-6-22-[Si(N₃)₄(phen)], $\delta = 9.60$ (2H, dd, 5.4, 1.3 Hz); OC-6-24-[Si(N₃)₂($\kappa N(1)$ -mtz)(phen)], $\delta = 9.85$ (2H, d, 5.4 Hz); OC-6-13-[Si(N₃)₂($\kappa N(2)$ -mtz)-2(phen)], $\delta = 10.07$ (2H, d, 5.5 Hz); OC-6-23-[Si(N₃)₃($\kappa N(1)$ -mtz)(phen)], $\delta = 9.57$ (2H, pd, *ca*. 5.5

Hz); OC-6-23-[Si(N₃)₃($\kappa N(2)$ -mtz)(phen)], $\delta = 9.85$ (2H); OC-6-23-[Si(N₃)₂($\kappa N(2)$ -mtz)(phen), $\delta = 9.93$ (1H); OC-6-23-[Si(N₃)₃(ptz)(phen)], $\delta = 9.90$ (2H, dd, 5.5 Hz, 1.2 Hz).

Fig. S1. IR spectrum of a nujol mull of analytically pure compound 5 between NaCl windows

Fig. S2. 6.5 – 10.5 ppm section of the ¹H NMR spectrum of compound **5** in acetonitrile- d_3 solution.

Fig. S3. 6.5 – 10.5 ppm section of the ¹H NMR spectrum in acetonitrile- d_3 solution of a sample of the reaction mixture during the synthesis of complex **5** after evaporation of the majority of the reaction solvent. Assignement: complex **5** ("2"), Si(N₃)₃(N₄CPh)(bpy) ("3") and PhCN ("4"), free bpy ("1"), complex **1** ("5").

Fig. S4. 7.0 - 10.2 ppm section of the ¹H NMR spectrum of a mixture of compound **5** and Ph-CN.

Fig. S5. ${}^{13}C$ ssNMR spectrum of Si(N₃)₂(N₄C-Ph)₂(bpy) (**5**) in solid state (100 - 170 ppm expansion, top; overview, bottom).

Fig. S6. ¹⁵N ssNMR spectrum of Si(N₃)₂(N₄C-Ph)₂(bpy) (**5**) in solid state (chemical shifts in unified scale). (Note: δ (NH₃) = 0 ppm), δ (CH₃NO₃) = 380 ppm.)

Fig. S8. Kinetic traces of Si(N₃)₄(phen) (2115 cm⁻¹) and Si(N₃)₂(N₄CPh)₂(phen) (2159 cm⁻¹) showing the conversion *via* the intermediary Si(N₃)₃(N₄CPh)(phen) (2154 cm⁻¹) in Ph-CN at 120 °C obtained from FTIR spectral monitoring. Absorbance changes were recorded at the given wavenumbers which are close to but do not coincide exactly with the interpolated peak maxima of observed species due to data point spacing.

3. Details of the single crystal X-ray diffraction studies of compounds 4a,b, 5, 6 and 9

Diffraction data were collected on a Bruker Smart APEX II or Bruker Kappa APEX II with CCD area detectors³ and an Oxford Cryosystems low temperature unit and Mo-K α radiation ($\lambda = 0.71073$ Å). Crystallographic and experimental details are summarized in Table S3. All measured reflections were corrected for Lorentz and polarisation effects and for absorption by semi empirical methods based on symmetry-equivalent and repeated reflections. The structures were solved by direct methods and refined by full matrix least squares methods on F^2 . H atoms were placed geometrically and refined with a riding model and with U_{iso} constrained to be 1.2 times (1.5 for CH₃ groups) U_{eq} of the carrier atom. Complex scattering factors were taken from the program package SHELXTL as implemented on a Viglen Pentium computer.⁴

Table S1. Crystallographic data of crystals of compounds **4a,b**, **6**, **7** and **9**

Compound	7·CH ₃ CN	6-CH ₃ CN	4a	4b	9
	Si(N3)2-	$Si(N_3)_2$ -	$Si(N_3)_2$ -	$Si(N_3)_2(N_4C$	
rational	$(N_4CPh-$	(N ₄ CTol-	$(N_4CMe-$	Me-к <i>N</i> 1)-	Si(N ₃) ₂ -
formula	κN^2) ₂ (nhen)	κN^2) ₂ (hnv)	κN^2) ₂ (hnv)	(N ₄ CMe-	(N ₄ Cpy-к <i>N</i> 1) ₂
	(12)2(piteli)	м <i>(2)</i> 2(бру)	M(2)2(0py)	к <i>N</i> 2)(bpy)	
dimensions	0.42×0.26	0.26×0.24	0.40×0.30	0.26×0.20	0.33×0.05
/ mm	× 0.22	× 0.04	× 0.20	× 0.08	× 0.05
Crystal symmetry	Triclinic	Monoclinic	Monoclinic	Monoclinic	Orthorhombic
Space	D1	D2 (1)/	<i>C</i> 2/	DO (1)/	ומ
group	P1	<i>P2</i> (1)/c	C2/c	<i>P2</i> (1)/c	Pbcn
<i>a</i> / Å	11.1045(3)	10.8501(3)	11.7941(6)	10.8760(3)	12.030(4)
<i>b</i> / Å	11.9991(4)	24.9305(6)	13.5508(6)	14.5601(4)	9.833(3)
<i>c</i> / Å	12.7949(4)	11.6142(3)	12.6135(6)	14.9281(4)	13.979(4)
α / \circ	96.0600(10)	90	90	90	90
β/\circ	108.5450(10)	110.1040(10)	104.555(2)	110.732(2)	90
γ/\circ	111.1680(10)	90	90	90	90
$U/\text{\AA}^3$	1459.66(8)	2950.20(13)	1951.19(16)	2210.87(10)	1653.6(9)
sum formula	C ₂₈ H ₂₁ N ₁₇ Si	C ₂₈ H ₂₅ N ₁₇ Si	$C_{14}H_{14}N_{16}Si$	C ₁₆ H ₁₇ N ₁₇ Si	$C_{12}H_8N_{16}Si$
Z	2	4	4	4	4
$D_{\rm C}$ /	1.110			4.400	
$(Mg \cdot m^{-3})$	1.419	1.413	1.479	1.429	1.624
μ (Mo-K _a) /	0.134	0.133	0.163	0.152	0.185
(mm^{-1})	611	1204	206	084	974
F(000)	18046	1304	890	984	824
$\frac{\theta}{\theta}$ range / °	2 22 25 00	2 00 27 50	2 33 27 53	2 00 25 00	3 96 25 00
0 Tallge /	2.22 - 23.99	2.00 - 27.30	2.33 - 21.33	2.00 - 25.00	5.90 - 25.00
transm	0.9458 /	0.9662 /	0.9378 /	0.9617 /	0.9413 /
coeff.	0.9711	0.9947	0.9589	0.9880	0.9908
indep. refls.					
$ F /\sigma(F) >$	8948	6717	2237	3878	1453
4.0					
R_1	0.0359	0.0392	0.0316	0.0473	0.0442
(all data)	(0.0377)	(0.0560)	(0.0368)	(0.0806)	(0.0854)
wR_2	0.0977	0.0885	0.0837	0.1070	0.0999
(all data)	(0.0998)	(0.0959)	(0.0876)	(0.1266)	(0.1212)
data,	0040 0 001	(717 0 410	0007 0 140	2070 0 011	1452 0 100
restraints,	8948, 3, 831	6/1/, 0, 418	2237, 0, 142	38/8, 0, 311	1453, 0, 132
parameters					
min./max.	0.222	0.000	0.220	0.000	0.254
les. e.	-0.233	-0.238	-0.329	-0.266	-0.354
$\lambda = 3$	/ 0.334	/ 0.366	/ 0.285	/ 0.263	/ 0.258
	(00.71	(27.74	42.4.50	175.56	404.42
FW T/V	623./1	627.74	434.50	4/5.56	404.43
<i>I /</i> K	100(2)	100(2)	130(2)	96(2)	110(2)

4. Differential Scanning Calorimetry (DSC) measurements

A Perkin Elmer "Pyris 1" Differential Scanning Calorimeter was operated under nitrogen flow and calibrated against indium. The samples were sealed in closed stainless steel cells, which could withstand an internal pressure of about 15 MPa. The heating rate was 10 K \min^{-1} .

Fig. S9. DSC of compound 4a, $[Si(N_3)_2(\kappa N(2)-mtz)_2(bpy)]$, heating rate 10 K min⁻¹.

Fig. S10. DSC of compound 8, $[Si(N3)(\kappa N(2)-mtz)_3(bpy)]$, heating rate 10 K min⁻¹.

Fig. S11. DSC of compound 9, $[Si(N_3)_2(\kappa N(1), N'-pytz)_2]$, heating rate 10 K min⁻¹.

5. Density functional theory (DFT) calculations.

DFT and HF calculations were carried out with the Gaussian03 package of programmes² on the B3LYP and HF levels of theory with the 6-311G(d,p) basis set. The Cartesian coordinates of the molecular start geometries of **4a,b** and **9** were obtained from the molecular structures as determined by X-ray diffraction. The nature of the minimum geometries was established by vibrational frequency calculations. The following symmetries were determined at the minimum: **4a** (C_2), **4b** (C_1), OC-6-32- (C_1) and OC-6-33-[Si(N₃)₂(κ N(2)-mtz)₂(bpy)] (C_2), OC-6-32-(C_1) and OC-6-13-[Si(N₃)₂(κ^2 N,N(1)-pytz)₂] (C_2), OC-6-23-[Si(N₃)₃(κ N(1)-mtz)(bpy) (C_1) and OC-6-33-[Si(N₃)₃(κ N(2)-mtz)(bpy)] (C_1), and OC-6-33-[Si(N₃)(κ N(2)-mtz)₃(bpy)] (C_1) obtained from the DFT calculations with reference to **9** (C_2), OC-6-23-[Si(N₃)₃(κ N(2)-mtz)(bpy)] (C_1) and OC-6-31-[Si(N₃)(κ (N₂)-mtz)₃(bpy)] (C_1). The temperature corrections to ΔG were obtained from Gaussian using the above minimum structures. 5.1. *OC-6-24-*Si(N₃)₂(*ax-κN*(2)-mtz)₂(bpy)] (Table 4 entry a)

Gaussian log file name: Si(N3)2(N4CMe)2(bpy)(2,5-2,5)_X-ray_b3lyp-6-311g(d,p)_C2_symmetry_opt_freq Route: opt freq b3lyp/6-311g(d,p) geom=connectivity SMILES: CC:1:N:NN(N:1)[Si](N=[N]#N)(N=[N]#N)N2N:N:C(C):N2.C:3:C:C:(:N:C:3)C: 4:C:C:C:C:N:4 Formula: $C_{14}H_{14}N_{16}Si$ Charge, multiplicity: 0, 1 Energy: -1707.7370926 a.u. Thermal correction to Gibbs Energy (298 K): 0.258938 a.u.

			· •
1 Si1	0.0000	0.0000	0.7333 Si
2 C2	0.0000	3.9254	0.3065 C
3 C3	-0.6245	5.2708	0.1554 C
4 H4	-0.1755	5.8139	-0.6793 H
5 H5	-0.4723	5.8696	1.0572 H
6 H6	-1.6959	5.1691	-0.0168 H
7 C7	2.5815	-0.4235	-0.6940 C
8 H8	2.9275	-0.4946	0.3267 H
9 C9	3.4190	-0.5513	-1.7935 C
10 H1	0 4.4758	8 -0.723	7 -1.6396 H
11 C1	1 2.8768	3 -0.4532	2 -3.0687 C
12 H1	2 3.506	1 -0.546	8 -3.9456 H
13 C1	3 1.5116	5 -0.233	9 -3.2101 C
14 H1	4 1.0673	3 -0.156	2 -4.1923 H
15 C1	5 0.7268	3 -0.114	8 -2.0674 C
16 N1	6 0.280	5 1.8720	0.5296 N
17 N1	7 1.4920	5 2.4250	0.5349 N
18 N1	8 1.3368	3.716	5 0.3960 N
19 N1	9 -0.682	1 2.789	2 0.3801 N
20 N2	0 1.3604	4 -0.255	0 1.8795 N
21 N2	1 1.608'	0.4643	3 2.8316 N
22 N2	2 1.902	7 1.0760) 3.7400 N
23 N2	3 1.268	6 -0.205	3 -0.8364 N
24 C24	4 0.0000) -3.9254	4 0.3065 C
25 C2	5 0.6245	5 -5.270	8 0.1554 C
26 H2	6 0.175	5 -5.813	9 -0.6793 H
27 H2	7 0.4723	3 -5.869	6 1.0572 H
28 H2	8 1.6959	9 -5.169	1 -0.0168 H

-2.5815	0.4235	-0.6940 C
-2.9275	0.4946	0.3267 H
-3.4190	0.5513	-1.7935 C
-4.4758	0.7237	-1.6396 H
-2.8768	0.4532	-3.0687 C
-3.5061	0.5468	-3.9456 H
-1.5116	0.2339	-3.2101 C
-1.0673	0.1562	-4.1923 H
-0.7268	0.1148	-2.0674 C
-0.2805	-1.8720	0.5296 N
-1.4926	-2.4250	0.5349 N
-1.3368	-3.7165	0.3960 N
0.6821	-2.7892	0.3801 N
-1.3604	0.2550	1.8795 N
-1.6087	-0.4643	2.8316 N
-1.9027	-1.0760	3.7400 N
-1.2686	0.2053	-0.8364 N
	-2.5815 -2.9275 -3.4190 -4.4758 -2.8768 -3.5061 -1.5116 -1.0673 -0.7268 -0.2805 -1.4926 -1.3368 0.6821 -1.3604 -1.6087 -1.9027 -1.2686	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

$\begin{array}{c} Frequencies \ (mode, \ wavenumber \ / \ cm^{-1}, \ intensity \ / \ km \ mol^{-1}) \\ {}_1 \qquad {}_{32.6083} \qquad {}_{0.839} \end{array}$

	02.0000	0.000						
2	36.6579	0.3793						
3	40.8417	1.4856	46	675.136	14.7653			
4	44.0093	0.0003	47	694.674	82.5406			
5	49.7955	0.9213	48	708.179	1.0568			
6	52,9198	0.2356	49	708.649	143.116			
7	53,9939	0.0307	50	711.702	73.6248			
8	55,2345	0.3568	51	730.302	1.988	91	1317.93	0.3491
9	59 5723	2 0931	52	730.684	0.1303	92	1343.24	27 0646
10	60.47	0 1333	53	737.624	1.6313	93	1351 12	1 2694
11	75 2163	0.7921	54	738.242	4.1803	94	1389.03	47 0947
12	84 6144	2 5086	55	754.215	81.8429	95	1390.07	0.0509
12	91 9956	2,5000	56	763.042	0.0278	96	1391 11	102 781
14	127.12	2.0005	57	784.104	28.181	97	1395.5	271 747
15	127.13	0.0115	58	789.349	1.152	90	1/19 56	0.844
10	100.037	0.4020	59	823.765	0.0227	99	1/19 61	24 0200
17	103.437	0.3332	60	899.666	0.0305	100	1413.01	24.0300
10	1/1.041	0.2607	61	908.333	1.796	101	1404.01	£ 7100
18	189.019	1./61	62	999.06	0.0028	101	1475.51	11 220
19	207.815	4.8244	63	999.748	7.3344	102	14/3.33	E0 2024
20	214.673	0.8195	64	1006.85	0.0221	103	1483.33	69.3824
21	231.378	0.4897	65	1009.98	0.2414	104	1489.74	40.2797
22	241.7	0.609	66	1026.78	0.0461	105	1489.77	1.0060
23	257.301	0.3994	67	1027.99	0.4718	105	1505.67	36.0096
24	266.123	1.2197	68	1040.28	8.6338	107	1527.86	7.1628
25	288.039	0.1163	69	1048.66	4.5356	108	1537.35	109.515
26	289.089	0	70	1050.35	30.7143	109	1537.62	0.2833
27	300.568	15.7356	71	1051.97	27.8949	110	1610.69	25.68/1
28	314.679	6.771	72	1065	5.1289	111	1621.87	19.4486
29	328.679	0.5212	73	1070.36	2.3617	112	1648.3	39.8603
30	376.072	16.5745	74	1070.36	1.1113	113	1663.4	19.5918
31	392.297	0.1753	75	1087.96	57.6819	114	22/1.8/	518.59
32	403.29	1.9104	76	1097.24	2.5441	115	2292.03	1054.54
33	420.509	77.07	77	1099.61	0.198	116	3042.31	42.4883
34	432.913	0.0573	78	1101.37	5.9874	117	3042.36	0.0696
35	463.688	0.3908	79	1135.74	1.1195	118	3095.52	0.2344
36	466.002	70.5678	80	1142.95	0.0812	119	3095.53	22.4921
37	490.641	1.3116	81	1143.34	/9./645	120	3129.94	0.0074
38	529,158	251,111	82	1152.57	0.4702	121	3129.95	18.3891
39	559 169	0.2935	83	1185.75	11.4583	122	3189.59	5.3062
40	574 488	273 307	84	1194.53	12.2954	123	3190.54	4.7622
41	574 803	162 845	85	1224.65	1.2336	124	3210.67	1.4868
42	598 296	24 504	86	1226.61	91.55/9	125	3213.47	1.2543
43	605.003	37 0476	87	12/9./6	0.5295	126	3215.1	0.472
44	657 743	4 6653	88	1283.85	31.8207	127	3222.78	1.5335
45	A30 833	3 2712	89	1294.33	11.2444	128	3236.21	0.5014
	000.004	5.2712	90	1302.51	22.0788	129	3236.64	43.0153

5.2. *OC-6-24-*[Si(N₃)₂(*k*N(2)-mtz)(*k*N(1)-mtz)(bpy)] (Table 4 entry b)

Gaussian log file name: Si(N3)2(N4CMe)2(bpy)_b3lyp_6-311G(d,p)_(2,5-1,5)_Xray_freq_355 Route: opt freq b3lyp/6-311g(d,p) nosymm geom=connectivity SMILES: CC:1:N:NN(N:1)[Si](N=[N]=N)(N=[N]=N)N:2N:NN=C:2C.C:3:C:C(:N:C:3)C: 4:C:C:C:C:N:4 Formula: C₁₄H₁₄N₁₆Si Charge, multiplicity: 0, 1 Energy: -1707.7367263a.u. Thermal correction to Gibbs Energy (298 K): 0.259756 a.u.

1 Si1	-0.1235	0.6767	0.0140 Si
2 N2	-0.1296	1.8571	1.3832 N
3 N3	0.8057	2.5401	1.7649 N
4 N4	1.6151	3.2160	2.1832 N
5 N5	0.3339	1.7575	-1.3621 N
6 N6	1.3637	2.3944	-1.5012 N
7 N7	2.2839	3.0225	-1.7158 N
8 N8	-0.6592	-0.8164	1.2844 N
9 N9	-0.2337	-0.9130	-1.2460 N
10 N1	0 1.669	8 0.080	3 0.3350 N
11 N1	1 2.176	7 -0.140	2 1.5474 N
12 N12	2 3.420	0 -0.516	51 1.3925 N
13 N13	3 2.572	5 -0.151	8 -0.6279 N
14 N14	4 -1.950	0.945	68 -0.3068 N
15 N1	5 -2.799	5 -0.116	58 -0.4210 N
16 N1	5 -3.981	1 0.341	9 -0.6379 N
17 N1′	7 -3.967	8 1.694	0 -0.6765 N
18 C18	3 -0.890	5 -0.624	6 2.5880 C
19 H19	9 -0.797	6 0.396	51 2.9293 H
20 C20) -1.225	0 -1.674	6 3.4320 C
21 H2	1 -1.406	5 -1.478	33 4.4801 H
22 C22	2 -1.311	4 -2.957	'1 2.9064 C
23 H2	3 -1.564	3 -3.798	36 3.5399 H
24 C24	4 -1.073	3 -3.150	1.5507 C
25 H2	5 -1.143	6 -4.138	30 1.1179 H
26 C26	5 -0.757	0 -2.053	0.7586 C
27 C27	7 -0.517	7 -2.107	'4 -0.6912 C
28 C28	8 -0.587	5 -3.261	8 -1.4628 C

29 H29	-0.8147	-4.2145	-1.0060 H
30 C30	-0.3778	-3.1703	-2.8334 C
31 H31	-0.4352	-4.0570	-3.4532 H
32 C32	-0.1017	-1.9298	-3.3945 C
33 H33	0.0617	-1.8125	-4.4574 H
34 C34	-0.0332	-0.8190	-2.5654 C
35 H35	0.1788	0.1753	-2.9307 H
36 C36	3.6504	-0.5149	0.0561 C
37 C37	4.9605	-0.8634	-0.5638 C
38 H38	4.8598	-0.9170	-1.6477 H
39 H39	5.3224	-1.8225	-0.1869 H
40 H40	5.7128	-0.1084	-0.3215 H
41 C41	-2.7128	2.0573	-0.4712 C
42 C42	-2.2614	3.4749	-0.4346 C
43 H43	-3.1244	4.1125	-0.6229 H
44 H44	-1.4981	3.6614	-1.1919 H
45 H45	-1.8326	3.7223	0.5382 H

Frequencies (mode, wavenumber / cm⁻¹, intensity / km mol⁻¹)

1	· · · ·	,		/	2	/		
1	21.1188	0.2472	46	675.778	32.4343			
2	39.4948	0.406	47	690.337	82.3672			
3	40.4724	0.4637	48	693.825	108.322			
4	49.8982	1,1062	49	699.24	29.6098			
5	55.0601	0.1726	50	709.21	34.1046			
6	59.3143	5.532	51	714.929	10.4242			
7	59.846	1.4207	52	729.622	1.5899	91	1336.17	15.8478
8	63,1347	0.0358	53	736.432	0.1054	92	1342.05	25.4619
9	73.5635	3,1839	54	738.175	2.2936	93	1353.69	3.2058
10	82.2534	6.6301	55	753.624	86.2098	94	1383.92	80.3935
11	82,7895	1.5263	56	763.31	0.1786	95	1389.97	35.9912
12	88.5495	1.3834	57	784.37	34.0707	96	1391.61	227.503
13	120.342	0.1537	58	789.843	2.2455	97	1398.23	97.738
14	160.069	0.3989	59	823.566	0.5814	98	1409.24	71.7175
15	161.529	0.3745	60	902.208	0.1973	99	1419.88	11.3048
16	167.696	0.3922	61	909.217	1.3325	100	1465.8	18.9931
17	177,231	3 6501	62	999.402	4.8593	101	1477.74	8.1616
18	187.393	0.2666	63	1001.32	7.0085	102	1479.48	8.7821
19	204.539	2,5899	64	1007.46	0.0267	103	1484.01	73.9614
20	212 414	0 4006	65	1010.56	0.3163	104	1489.37	21.7236
21	240.243	0.2848	66	1027.5	0.0196	105	1492.28	15.4339
22	249.072	0.3309	67	1028.69	0.1897	106	1507.42	35.9072
23	250.342	0.0954	68	1031.25	8.9924	107	1531.38	13.6243
24	276.744	2.1281	69	1040.71	7.9391	108	1534.78	41.3327
25	284,488	0.5258	70	1047.27	12.2795	109	1538.01	53.2228
26	296.676	2,7364	71	1052.36	36.7267	110	1613.17	23.9952
27	305.314	8.3525	72	1065.49	5.2542	111	1623.63	25.7887
28	319.059	4.8738	73	1070.85	1.1916	112	1650.87	37.7446
29	326.901	7.5222	74	1075.09	3.8637	113	1664.99	23.1697
30	374,924	29.0488	75	1083.84	22.8497	114	2255.49	212.262
31	388,154	15.6692	76	1089.04	73.6599	115	2291.35	1124.98
32	399.733	2.122	77	1098.3	1.7512	116	3043.89	17.6057
33	419.748	26,3087	78	1099.71	1.059	117	3053.7	11.4698
34	435.845	6.8306	79	1126.57	10.3105	118	3097.84	9.6103
35	461.033	0.2104	80	1136.56	2.1037	119	3114.06	5.127
36	472 664	31 1932	81	1139.48	27.2899	120	3132.3	8.3134
37	489.392	2.6482	82	1152.3	0.5629	121	3139.63	9.1271
38	536,277	281 246	83	1175.78	13.7766	122	3190.87	4.7749
39	556 384	77 7503	84	1185.76	13.0296	123	3191.94	4.4792
40	559 166	21 1788	85	1195.03	13.1353	124	3211.32	1.6483
41	566,399	322.312	86	1220.45	45.4091	125	3213.26	1.0194
42	600 408	2 634	87	1278.26	9.1974	126	3216.08	0.0397
43	607 867	34 5043	88	1292.62	9.5267	127	3225.14	0.8911
44	657 074	4 6341	89	1300.58	17.7306	128	3233.02	9.0808
45	667.46	0.0479	90	1317.85	1.8459	129	3233.96	20.9955
10	007.40	0.0470						

3.3. OC-6-32-[Si(N₃)₂(KN(2)-mtz)₂(bpy)] (Table 4 entry c)

Gaussian log file name: Si(N3)2(CHN4)2(bpy)_b3lyp_6-311G(d,p)_cis-transcomparison_opt_freq_350_600_1 Route: opt freq b3lyp/6-311g(d,p) nosymm geom=connectivity SMILES: CC:1:N:NN(N:1)[Si](N=[N]=N)(N=[N]#N)N2N:N:C(C):N2.C:3:C:C(:N:C:3)C: 4:C:C:C:C:N:4 Formula: $C_{14}H_{14}N_{16}Si$ Charge, multiplicity: 0, 1 Energy: -1707.7314632 a.u. Thermal correction to Gibbs Energy (298 K): 0.257949 a.u.

Cartesian Coordinates (x y z format)

1 Si1 -0.1747 -0.5762 -0.3348 Si 2 C2 -0.2710 2.4002 -0.8553 C 3 H3 -1.3280 2.2419 -0.7119 H 4 C4 0.2457 3.6544 -1.1525 C 5 H5 -0.4241 4.5010 -1.2222 H 6 C6 1.6129 3.7901 -1.3516 C 7 H7 2.0471 4.7554 -1.5823 H 8 C 8 2.4215 2.6649 -1.2526 C 9 H9 3.4887 2.7437 -1.4042 H 10 C10 1.8391 1.4360 -0.9560 C 11 N11 -0.2506 -0.7316 -2.1359 N 12 N12 0.5105 1.3182 -0.7598 N 0.9076 3.2775 C 13 C13 0.3898 14 C14 0.2762 1.9322 4.3542 C 15 H15 1.2335 2.0650 4.8628 H 16 H16 -0.4558 1.6205 5.1040 H 17 H17 -0.0452 2.8853 3.9341 H 18 C18 2.3947 -2.0967 -0.3744 C 1.7103 -2.8976 19 H19 -0.1341 H 20 C20 3.7617 -2.2849 -0.5257 C 21 H21 4.1807 -3.2737 -0.3956 H 22 C22 4.5603 -1.1912 -0.8362 C 23 H23 5.6308 -1.3045 -0.9582 H 24 C24 0.0571 3.9686 -0.9880 C 25 H25 4.5714 0.9213 -1.2286 H 26 C26 2.5912 0.1765 -0.8256 C 27 N27 0.2301 -0.1018 1.4616 N 28 N28 0.8460 -0.9296 2.3035 N 29 N29 0.9569 -0.3123 3.4507 N 30 N30 -0.0630 1.0681 2.0412 N 31 N31 -0.4408 -2.3192 -0.0060 N 32 N32 -0.9917 -2.8393 0.9517 N

33 N33	-1.4879	-3.4128	1.7915 N
34 N34	1.8303	-0.8922	-0.5234 N
35 N35	-1.9566	-0.0155	-0.1182 N
36 N36	-2.6581	-0.3236	0.9723 N
37 N37	-2.7365	0.5244	-1.0718 N
38 N38	-1.0178	-1.4709	-2.7248 N
39 N39	-1.7002	-2.1292	-3.3482 N
40 C40	-3.9341	0.5345	-0.5012 C
41 C41	-5.1713	1.0459	-1.1569 C
42 H42	-5.6068	1.8651	-0.5793 H
43 H43	-4.9436	1.3988	-2.1626 H
44 H44	-5.9224	0.2552	-1.2227 H
45 N45	-3.8995	0.0145	0.7517 N

Frequencies (mode, wavenumber / cm^{-1} , intensity / km mol⁻¹)

1	28.1858	0.0606	46	675.326	29.4993		1010 57	7 4005
2	30.0109	0.5109	47	692.338	112.687	91	1316.57	7.1035
3	34.6461	0.4461	48	700.539	81.9319	92	1346.84	7.4623
4	38.4119	0.0976	49	710.193	46.9754	93	1354.6	12.5047
5	51.4998	1.1217	50	714.703	104.753	94	1387.48	119.895
6	56.9274	0.1979	51	728.161	0.8064	95	1389.53	26.6904
7	58.2035	0.7924	52	730.641	3.8854	96	1390 42	61 2883
8	61.5262	0.2799	53	738.153	2.4613	97	1395.61	216 248
9	66.7372	0.3228	54	739.399	2.0872	00	1410.70	14 0000
10	68.9436	0.4121	55	752.653	95.5871	30	1413.76	14.0330
11	74.5232	2.532	56	763.329	2.423	99	1420.72	13.7116
12	88.2835	2.3966	57	784.414	27.4258	100	1467.77	28.7008
13	92.8733	1.3076	58	788.553	0.9403	101	1478.42	8.767
14	115.944	0.1984	59	824.362	0.4302	102	1480.93	9.2694
15	148.81	0.3044	60	898.924	1.1489	103	1481.95	72.3737
16	165.529	0.3649	61	908.941	2.272	104	1487.55	23 0549
17	169.585	0.5912	62	990.211	2.4709	105	1490.64	20.6147
18	174.214	0.4053	63	998.108	6.3982	100	1511.00	20.0147
19	194.525	1.152	64	999.342	2.6863	100	1501.04	33.4066
20	215.541	2.399	65	1008.39	0.491/	107	1531.84	4.9941
21	236.797	1.3289	66	1021.76	0.2204	108	1539.52	65.6175
22	250.287	0.3731	67	1028.23	0.4/81	109	1539.82	52.9366
23	257.325	0.0997	68	1038.94	5./684	110	1612.32	26.8643
24	265.622	0.8602	69	1043.56	22.91/9	111	1623.37	21.5187
25	2/0.854	3./30/	70	1049.1	20.0828	112	1647.8	35.0349
26	289.609	0.6538	71	1001.14	21.6209	113	1662.62	20 1564
27	305.673	16.0348	72	1000.00	4.0014	114	2275 /1	726 912
20	321.7	0.1069	73	1005.02	1.502	114	2273.41	720.012
20	270.01	23.343	75	1090.18	44 2131	C11	2231.04	702.001
21	270.22	10 52/0	76	1096.97	0.0225	116	3042.36	19.4543
22	373.433 A01.966	2 771	70	1101 36	2 0894	117	3043.06	20.0806
32	401.300	17 1136	78	1102.05	5 7742	118	3096.59	10.6441
34	430.06	9 9424	79	1127.11	28 2899	119	3096.71	10.0422
35	461 421	0 7184	80	1137.18	1,2729	120	3129.19	9.6579
36	471.007	136.206	81	1146.16	36.0369	121	3131.84	8.7946
37	485.075	0.3914	82	1153	0.6173	122	3189.76	4 9632
38	502.429	198.723	83	1186.59	14.352	123	3190.79	4 8326
39	555.416	0.83	84	1196.41	14.6997	123	2210 E1	2 1705
40	561.273	163.854	85	1224.8	40.9908	124	3210.01	2.1703
41	585.953	209.801	86	1225.54	59.3012	125	3212.4	1.0917
42	602.232	7.717	87	1281.26	10.4383	126	3214.87	0.2777
43	604.043	38.4474	88	1284.26	11.673	127	3224.12	1.3564
44	655.101	6.3087	89	1289.98	13.0155	128	3229.17	20.5048
45	667.726	3.0055	90	1306.33	17.8356	129	3254.42	37.3553

5.3. *OC-6-33*-[Si(N₃)₂(κN(2)-mtz)₂(bpy)] (Table 4 entry d)

Gaussian log file name: Si(ax-N3)2(eq-2,5-N4CMe)(bpy)-b3lyp-6-311g(d,p)_opt_freq Route: opt freq b3lyp/6-311g(d,p) nosymm geom=connectivity SMILES: CC:1:N:NN(N:1)[Si](N=[N]#N)(N=[N]#N)N2N:N:C(C):N2.C:3:C:C(:N:C:3)C: 4:C:C:C:C:N:4 Formula: C₁₄H₁₄N₁₆Si Charge, multiplicity: 0, 1 Energy: -1707.7266821 a.u. Thermal correction to Gibbs Energy (298 K): 0.257668 a.u.

1 S	i1	0.0784	-0.0194	-0.0490 Si
20	22	0.0019	-0.1296	2.9714 C
3 F	ł3	1.0694	-0.2281	2.8521 H
4 C	24	-0.5862	-0.1046	4.2291 C
5 H	ł5	0.0362	-0.2080	5.1079 H
60	C6	-1.9617	0.0577	4.3247 C
7 F	I 7	-2.4523	0.0827	5.2901 H
80	28	-2.7045	0.1882	3.1581 C
9 F	I 9	-3.7768	0.3120	3.2073 H
10	C10	-2.0521	0.1541	1.9285 C
11	N11	-0.2812	-1.7857	0.0461 N
12	N12	-0.7162	-0.0013	1.8493 N
13	C13	-2.4565	0.2564	-1.6748 C
14	H14	-1.7685	0.1497	-2.4993 H
15	C15	-3.8190	0.4244	-1.8841 C
16	H16	-4.1978	0.4737	-2.8963 H
17	C17	-4.6613	0.5210	-0.7848 C
18	H18	-5.7287	0.6546	-0.9128 H
19	C19	-4.1136	0.4383	0.4891 C
20	H20	-4.7498	0.5066	1.3599 H
21	C21	-2.7390	0.2669	0.6291 C
22	N22	0.0086	1.7809	0.0826 N
23	N23	0.8692	2.6240	-0.0905 N
24	N24	1.5931	3.4846	-0.2293 N
25	N25	-1.9309	0.1844	-0.4459 N
26	N26	1.8497	-0.1815	0.5548 N
27	N27	2.5001	0.6827	1.3385 N
28	N28	2.6409	-1.1852	0.1615 N
29	N29	0.2387	-2.7333	-0.5138 N
30	N30	0.6522	-3.6798	-0.9796 N
31	C31	3.7998	-0.8956	0.7357 C
32	C32	5.0360	-1.7150	0.5877 C
33	H33	5.4616	-1.9501	1.5657 H
34	H34	4.8065	-2.6419	0.0628 H
35	H35	5.7943	-1.1687	0.0206 H
36	N36	3.7247	0.2435	1.4712 N

37 N37	0.5778	-0.0264	-1.8602 N
38 N38	0.1863	-0.9045	-2.7876 N
39 N39	0.8098	-0.6044	-3.8972 N
40 N40	1.4645	0.8467	-2.3492 N
41 C41	1.5981	0.4634	-3.6110 C
42 C42	2.5066	1.1194	-4.5937 C
43 H43	3.3321	0.4538	-4.8593 H
44 H44	1.9689	1.3610	-5.5131 H
45 H45	2.9180	2.0335	-4.1664 H

Freq	uencies (m	ode, wave	enumber / c	m ⁻¹ , inten	sity	$/ \text{ km mol}^{-1}$)				
1	-11.7304	0.2438 37	487.448	0.8994	73	1071.29	0.6591			
2	27.6141	3.3712 38	493.231	325.087	74	1071.56	3.9266			
3	32.948	0 39	505.994	131.472	75	1095.86	48.1323			
4	33,8309	0.038 40	550.967	1.8286	76	1099.33	0.1523			
5	46.0407	0.353 41	594.044	0.6351	77	1101.45	5.2023			
6	46.4907	0.0077 42	595.179	24.0997	78	1103.6	0.0012			
7	58.8428	0.6532 43	604.049	116.165	79	1134.06	42.336			
8	65.8192	0.2037 44	653.495	10.3574	80	1138.64	0.1494			
9	71.8914	0.0005 45	663.984	87.2295	81	1145.44	27.7773			
10	79.9993	1.2623 46	668.932	11.5134	82	1153.83	0.2617			
11	87.5372	0.7154 47	675.674	45.274	83	1188.08	13.9307			
12	93.3496	3.2004 48	699.727	219.505	84	1198.78	12.3183			
13	98.2265	1.4924 49	709.127	19.3554	85	1222.69	27.077			
14	100.431	2.224 50	709.3	54.7416	86	1222.72	48.9841			
15	150.952	1.2161 51	729.473	0.1404	87	1283.59	9.2053	109	1541.61	73 0114
16	152.275	0.6177 52	732.498	0.1684	88	1284.76	16.1151	110	1613.77	29.6723
17	162.479	0.0375 53	739.187	0.0514	89	1288.28	26.4034	111	1624.19	21 71 85
18	170.264	1.0849 54	739.253	3.2751	90	1306.05	2.9817	112	16/9 27	30 5276
19	173.978	0.522 55	749.16	93.4221	91	1321.41	9.4826	112	1661.97	17/369
20	213.498	0.2238 56	761.45	0.06	92	1347.52	7.3195	114	2287.23	1010 53
21	239.718	1.0113 57	783.639	32.9153	93	1354.2	9.9219	115	2207.23	363.053
22	252.379	0.2068 58	787.204	0.1736	94	1387.36	6.9423	116	2233.22	10 4004
23	256.242	3.2746 59	822.687	1.347	95	1388.11	1.1006	117	2042.00	28 5876
24	263.246	8.5719 60	896.958	0.9589	96	1408.1	65.9917	110	2042.02	19 / 27/
25	267.372	0.7881 61	905.295	2.7936	97	1411.48	335.713	110	2030.00	2 0100
26	289.218	0.3366 62	987.348	2.436	98	1418.11	23.3124	120	2124 6	0.0405
27	294.521	12.5445 63	989.004	2.0429	99	1418.45	0.052	120	2124.0	12 /002
28	338.269	2.8662 64	999.88	2.6151	100	1471.98	28.3579	121	2109.01	12.4302
29	343.82	13.2097 65	1000.01	3.7543	101	1480.13	14.4371	122	2103.7	4.3070
30	367.48	13.882 66	1019.76	1.0644	102	1480.4	5.4365	123	3130.73	4.4142
31	389.819	2.9555 67	1022.84	0.417	103	1480.89	78.2418	124	3211.03	1.3003
32	404.803	6.7799 ₆₈	1038.2	2.7477	104	1489.22	23.5934	120	3213.01	0.2325
33	412.416	14.5163 69	1045.07	31.9482	105	1489.58	14.2459	125	3215.42	0.0727
34	422.45	8.357 70	1046.93	23.2848	106	1517.21	39.573	127	3225.57	2.8142
35	451.56	110.381 ₇₁	1050.69	14.7136	107	1534.04	10.6075	128	3248.85	0.733
36	458.612	2.8928 72	1068.37	2.4128	108	1540.46	44.824	129	3243.13	07.3620

5.4. *OC-6-22-*[Si(N₃)₂($\kappa^2 N, N(1)$ -pytz)₂] (Table 4 entry e)

Gaussian log file name: Si(N3)2(pytz)2(bpy)_b3lyp_opt_freq_C2_symm Route: opt freq b3lyp/6-311g(d,p) nosymm geom=connectivity SMILES: N=[N]=N[Si](N=[N]=N)(N:1N:NN=C:1:C:2:C:C=C:N:2)N:3N:NN=C:3:C:4:C: C:C=C:N:4 Formula: C₁₂H₈N₁₆Si Charge, multiplicity: 0, 1 Energy: -1627.8712204 a.u. Thermal correction to Gibbs Energy (298 K): 0.189954 a.u.

Cartesian Coordinates (x y z format)

0.0000 0.0000 0.4316 Si 1 Si1 -1.6291 2 C2 -1.3824 -1.3270 C 3 C3 1.6291 1.3824 -1.3270 C 4 N4 -2.5876 -1.3392 -2.2351 N 5 N5 2.5876 1.3392 -2.2351 N 6 N6 1.4238 0.6717 2.6356 N 7 N7 -1.4238 -0.6717 2.6356 N 8 N8 -1.3080 -0.1450 -0.9231 N 9 N9 1.3080 0.1450 -0.9231 N 10 N10 -2.0934 0.7003 -1.5995 N 11 N11 2.0934 -0.7003 -1.5995 N 12 N12 -2.8523 -0.0229 -2.3823 N 13 N13 2.8523 0.0229 -2.3823 N 14 N14 0.0000 1.9757 0.2215 N 15 N15 0.0000 -1.9757 0.2215 N 1.3442 -0.0584 16 N16 1.6643 N -1.3442 0.0584 17 N17 1.6643 N 18 C18 -0.1879 -4.6914 -0.2650 C 19 H19 -0.2570 -5.7565 -0.4514 H -0.7959 2.8315 20 C20 0.8843 C 0.7959 -2.8315 21 C21 0.8843 C 22 H22 -1.4876 2.3797 1.5816 H 23 H23 1.4876 -2.3797 1.5816 H 24 C24 -1.0050 -3.8086 -0.9598 C -4.1385 25 H25 -1.7223 -1.6992 H 26 C26 -0.7243 4.1983 0.6662 C 0.6662 C 27 C27 0.7243 -4.1983 28 H28 -1.3795 4.8589 1.2177 H 29 H29 1.3795 -4.8589 1.2177 H 30 N30 1.5650 1.3318 3.5500 N 31 N31 -1.5650 -1.3318 3.5500 N 32 C32 0.8859 2.4510 -0.6969 C 33 C33 -0.8859 -2.4510 -0.6969 C 1.0050 34 C34 3.8086 -0.9598 C 35 H35 1.7223 4.1385 -1.6992 H 36 C36 0.1879 4.6914 -0.2650 C 37 H37 0.2570 5.7565 -0.4514 H

1	25.4639	1.1455						
2	39.9466	2.04	46	741.684	50.7356			
3	44.4097	7.3376	47	748.606	55.2564			
4	46.3041	5.0165	48	782.947	10.977			
5	49.8935	0.3776	49	783.464	8.5324			
6	69.3706	0.2403	50	810.948	14.5534			
7	80.4626	2.0637	51	813.054	12.5461			
8	100.128	0.9323	52	923.363	2.39			
9	100,166	0.2014	53	923.47	3.0415			
10	129,172	3.598	54	1006	9.9956			
11	155.882	0.0776	55	1009.24	0.019			
12	167.79	0.0003	56	1009.44	0.2151			
13	170 279	1 7642	57	1012.46	5.7303			
14	202 445	3 323	58	1031.42	11.6815			
15	211 458	0.0489	59	1031.9	0.5696			
16	232 814	0.0514	60	1031.92	0.56			
17	237 372	3 6264	61	1033.25	8.8052			
18	271 418	9 7358	62	1061.38	0.7056			
19	277.969	2 812	63	1063.12	34.5466			
20	201 242	0.2542	64	1072.11	49.6955			
20	214 502	0.1599	65	1072.2	7.9249			
21	220 225	5 9029	66	1116.65	24.9259			
22	320.323	0.5030	67	1119.72	11.9363			
23	300.123 ADE 105	15 7502	68	1136.37	6.5416			
24	403.163	3.0004	69	1137.76	9.1016			
20	410.004	2.0004	70	1153.94	23.1933			
20	416.810	6.0896	71	1157.51	11.2288			
2/	444.715	119.26	72	1185.33	15.5242			
28	459.221	39.5426	73	1185.57	17.6408			
29	460.045	8.1851	74	1216.37	7.8086			
30	518.607	1.2884	75	1218.78	6.6412			
31	523.462	5.97	76	1269.19	1.2296	91	1575.12	16.0101
32	528.832	4.6///	77	1271.49	2.7209	92	1604.95	15.9155
33	538.742	15.1094	78	1305.69	34.5225	93	1605.1	13.9738
34	573.511	207.724	79	1307.05	11.4994	94	1669.93	4.4389
35	590.906	254.816	80	1315.68	0.8951	95	1670.14	183.385
36	598.784	73.7528	81	1316.01	25.216	96	2249.79	452.314
37	603.813	0.6727	82	1379.76	116.217	97	2273.31	946.472
38	669.808	0.9	83	1386.05	232.899	98	3191.73	9.3187
39	677.109	58.2607	84	1426.87	37.9795	99	3191.74	0.3812
40	685.109	34.1403	85	1431.78	2.2115	100	3212.7	0.8116
41	689.278	82.8602	86	1483.21	21.7056	101	3212.7	1.0688
42	727.226	0.9842	87	1485.15	84.9813	102	3219.53	1.2767
43	728.855	0.3123	88	1498.51	71.8006	103	3219.53	2.1921
44	738.808	1.0212	89	1498.95	72.086	104	3227.01	13.2367
45	739.154	26.9899	90	1574.74	35.3394	105	3227.02	2.6446

Frequencies (mode, wavenumber / cm⁻¹, intensity / km mol⁻¹)

5.5. *OC-6-32-*[Si(N₃)₂($\kappa^2 N, N(1)$ -pytz)₂] (Table 4 entry f)

Gaussian log file name: OC-32-Si(N3)2(pytz)2_b3lyp_6311g(d,p)optfreq7 Route: opt freq b3lyp/6-311g(d,p) nosymm geom=connectivity SMILES: N=[N]=N[Si](N=[N]#N)(N:1N:NN=C:1:C:2:C:C:N:2)N:3N:NN=C:3:C:4:C:C :C:C:N:4 Formula: $C_{12}H_8N_{16}Si$ Charge, multiplicity: 0, 1 Energy: -1627.8604086 a.u. Thermal correction to Gibbs Energy (298 K): 0.188055 a.u.

1 Si1	0.0422	0.7463	0.0308 Si
2 C2	-2.0924	-1.3011	-0.2737 C
3 C3	1.7383	-0.7905	1.6272 C
4 N4	1.8876	-1.4399	2.7648 N
5 N5	0.6670	3.3383	0.2106 N
6 N6	-1.1882	1.3200	-2.3156 N
7 N7	-0.7892	-1.1770	-0.6220 N
8 N8	0.5129	-0.2520	1.5456 N
9 N9	-0.1285	-0.5801	2.6758 N
10 N10	0.6982	-1.2881	3.3952 N
11 N11	1.9245	0.0868	-0.5055 N
12 N12	2 -1.7236	0.8945	0.5583 N
13 N13	0.7140	2.2327	0.7257 N
14 N14	-0.1483	1.3075	-1.6805 N
15 C15	2.5688	0.3950	-1.6431 C
16 H16	5 1.9832	0.9349	-2.3747 H
17 C17	3.8941	0.0380	-1.8451 C
18 H18	4.3808	0.3037	-2.7741 H
19 N19	0.6759	4.3962	-0.1938 N
20 N20) -2.1187	1.3523	-2.9643 N
21 C21	2.5870	-0.5740	0.4783 C
22 C22	3.9138	-0.9646	0.3406 C
23 H23	4.3941	-1.4901	1.1550 H
24 C24	4.5736	-0.6518	-0.8410 C
25 H25	5 5.6100	-0.9368	-0.9775 H
26 N26	5 -2.4032	1.8909	1.1581 N
27 N27	-3.6214	1.4729	1.3306 N
28 N28	3 -3.7798	0.2105	0.8597 N
29 C29	-2.5947	-0.1173	0.3910 C
30 C30	-2.8329	-2.4445	-0.5609 C
31 H31	-3.8702	-2.4873	-0.2570 H
32 C32	-0.1957	-2.1813	-1.2805 C
33 H33	0.8419	-2.0371	-1.5511 H
34 C34	-2.2062	-3.4844	-1.2319 C
35 H35	5 -2.7528	-4.3892	-1.4689 H
36 C36	-0.8676	-3.3512	-1.6023 C
37 H37	-0.3491	-4.1394	-2.1321 H

1	23.8342	0.2917	46	743.611	64.8484			
2	30.9272	0.9664	47	744.673	58.1411			
3	42.7427	3.2703	48	778.094	10.1839			
4	46.7825	0.473	49	783.832	10.6853			
5	53.294	0.2178	50	811.333	11.798			
6	66.7741	1.913	51	815.284	17.5446			
7	84.508	1.2116	52	920.48	3.1585			
8	97.6037	0.4689	53	926.726	1.977			
9	99.637	2.4052	54	987.633	0.1496			
10	115.204	7.1216	55	993.245	2.4095			
11	134.682	0.1788	56	996.241	8.2081			
12	145.612	2.0188	57	1018.46	0.2522			
13	166.9	3.8122	58	1023.13	7.894			
14	192.533	1.8254	59	1026.39	10.8024			
15	209.616	0.2455	60	1029.82	0.1451			
16	226.437	1.4337	61	1032.34	0.1084			
17	231,258	1.7558	62	1054.46	12.278			
18	255,905	1.2961	63	1057.86	17.4573			
19	275.547	4.0878	64	1069.12	16.9333			
20	285.595	1.5584	65	1070.7	9.4379			
21	309.918	13.9436	66	1116.11	26.2658			
22	320 805	20 0104	67	1118.3	18,7244			
23	331 813	2 3543	68	1134.88	11,2391			
24	384 183	24 0111	69	1135.42	18,7279			
25	410 014	7 5294	70	1137 71	7 6167			
26	418 864	3 2618	71	1149 11	20 7707			
27	454 032	10.8859	72	1182.54	12 9204			
28	457.46	10.8892	73	1183.27	16.0789			
29	481 671	140 326	74	1224 43	7 7956			
30	518 565	1 4098	75	1232 38	12 3197			
31	523.466	11 31/2	76	1276.82	0.7365	01	1501.00	12 0202
22	527.767	5 9965	77	1282.29	1 9487	02	1001.00	15.0203
32	539 033	25 9932	78	1302.25	29 1605	32	1604.74	10.0204
24	579 972	167 604	79	1305.66	1 8306	33	1600.30	00 2227
25	507 072	107.004	20	1209.72	22 2211	34	1002.02	90.2337
20	505.073	152.232	00	1215.02	12 25/2	30	22202	67.2073
30 27	C01 552	10.0713	07	1296.06	15.5545	36	2270.2	070.002
37	601.000	10.0575	02	1202.00	250 500	97	2286.36	8/9.028
20	004.211	10.0004	0.0	1/26.2	203.000	98	3190.23	3.3124
35	002.140	02.4102	04	1420.2	30.1237	39	3190.62	4.4682
40	57.311	32.4182	00	1403.00	2.0430	100	3203.57	0.8995
41	707.769	100.26	00 07	1402.04	43.2072	101	3209.34	1.02/9
42	/2/.340	0.3912	0/ 00	1400.00	02.19/0 C0.1470	102	3216.07	2.52
43	/28.134	2.1646	88	1437.3	6U.14/6	103	3217.37	2.2562
44	/36.631	8.5354	89	1498.97	83.0/85	104	3219.07	2.7871
45	/40.12/	15./26	90	15/9./1	27.5635	105	3222.72	8.8884

Frequencies (mode, wavenumber / cm⁻¹, intensity / km mol⁻¹)

5.6. *OC-6-13-*[Si(N₃)₂($\kappa^2 N, N(1)$ -pytz)₂] (Table 4 entry g)

Gaussian log file name: OC-6-13-Si(N3)2(pyttz)2_b3lyp_6311g(d,p)goptfreq_C1 Route: opt freq b3lyp/6-311g(d,p) nosymm geom=connectivity SMILES: N=[N]=N[Si](N=[N]=N)(N:1NNN:C:1:C:2:C:C:N:2)N:3NNN:C:3:C:4:C:C:C:C:N:4 Formula: $C_{12}H_8N_{16}Si$ Charge, multiplicity: 0, 1 Energy: -1627.8620308 a.u. Thermal correction to Gibbs Energy (298 K): 0.190622706771708 a.u.

5.7. OC-6-23-[Si(N₃)₃(*k*N(2)-mtz)(bpy)] (Table 4 entry h)

Gaussian log file name: eq-Si(N3)3(2,5-N4CMe)(bpy)_hf_6-311g(d,p)_opt_freq_355@2011-09-22T03;01;12

Route: opt freq b3lyp/6-311g(d,p) nosymm geom=connectivity

SMILES: CC:1:N:NN(N:1)[Si](N=[N]=N)(N=[N]=N)N=[N]#N.C:2:C:C:C(:N:C:2)C:3:C:C: C:C:N:3

Formula: C₁₂H₁₁N₁₅Si

Charge, multiplicity: 0, 1

Energy: -1574.91621248 a.u.

Thermal correction to Gibbs Energy (298 K): 0.210567 a.u.

1 Si1	0.6307	-0.5106	0.3497 Si
2 C2	-0.6272	1.3726	2.2917 C
3 H3	0.3975	1.4129	2.6326 H
4 C4	-1.6586	2.0746	2.9006 C
5 H5	-1.4480	2.6867	3.7674 H
6 C6	-2.9406	1.9765	2.3740 C
7 H7	-3.7671	2.5109	2.8270 H
8 C8	-3.1519	1.1886	1.2490 C
9 H9	-4.1388	1.1071	0.8157 H
10 C10	-2.0744	0.5093	0.6873 C
11 N11	-0.0330	-1.8691	1.3986 N
12 N12	2 1.8436	0.0739	1.5546 N
13 N13	3 2.4191	-0.6689	2.3317 N
14 N14	4 3.0007	-1.2896	3.0830 N
15 N15	5 -0.8400	0.6005	1.2199 N
16 C16	5 1.2020	2.9920	-1.3877 C
17 C17	1.3894	4.4709	-1.4222 C
18 H18	0.7356	4.9258	-2.1696 H
19 H19	9 2.4192	4.7229	-1.6889 H
20 H20) 1.1704	4.8995	-0.4441 H
21 C21	-0.9082	-1.6365	-1.9895 C
22 H22	2 0.0751	-2.0187	-2.2240 H
23 C23	-2.0330	-1.9118	-2.7570 C
24 H24	4 -1.9384	-2.5370	-3.6346 H
25 C25	-3.2548	-1.3708	-2.3778 C
26 H26	5 -4.1496	-1.5658	-2.9566 H
27 C27	-3.3177	-0.5682	-1.2440 C
28 H28	3 -4.2570	-0.1318	-0.9348 H
29 C29	-2.1546	-0.3346	-0.5167 C

30 N30	0.9089	1.0347	-0.7327 N
31 N31	1.0570	0.9760	-2.0547 N
32 N32	1.2426	2.1979	-2.4854 N
33 N33	0.9877	2.2915	-0.2808 N
34 N34	1.6485	-1.5980	-0.6722 N
35 N35	2.7624	-1.3268	-1.0865 N
36 N36	3.8040	-1.1487	-1.4972 N
37 N37	-0.9759	-0.8710	-0.8928 N
38 N38	-0.0700	-3.0368	1.0608 N
39 N39	-0.1488	-4.1428	0.8061 N

5.8. OC-6-23-[Si(N₃)₃(*k*N(1)-mtz)(bpy)] (Table 4 entry i)

Gaussian log file name: ax-Si(N3)3(1,5-N4CMe)2(bpy)_b3lyp_6-311G(d,p)_opt_freq Route: opt freq b3lyp/6-311g(d,p) geom=connectivity SMILES: CC:1:NN:NN:1[Si](N=[N]=N)(N=[N]=N)N=[N]#N.C:2:C:C(:N:C:2)C:3:C:C:C C:N:3 Formula: $C_{12}H_{11}N_{15}Si$ Charge, multiplicity: 0, 1 Energy: -1574.9141127 a.u. Thermal correction to Gibbs Energy (298 K): 0.212537 a.u.

Caric		Junates	5 (r y 2 1	om
1 Si1	0.6510	0.0714	-0.2402	Si
2 C2	-0.7844	-2.3015	-1.3511	С
3 H3	0.2338	-2.6435	-1.4718	Η
4 C4	-1.8806	-3.0546	-1.7497	C
5 H5	-1.7257	-4.0217	-2.2090) H
6 C6	-3.1554	-2.5431	-1.5422	С
7 H7	-4.0321	-3.1039	-1.8429	Н
8 C8	-3.2954	-1.3029	-0.9305	С
9 H9	-4.2782	-0.8939	-0.7438	Η
10 C10	0 -2.155	-0.605	59 -0.54	72 C
11 N1	1 0.365	0.884	3 -1.88	81 N
12 N12	2 1.849	3 -1.113	30 -0.91	03 N
13 N1	3 2.403	-1.014	48 -1.99	47 N
14 N14	4 2.956	4 -1.011	8 -2.98	49 N
15 N1	5 -0.924	8 -1.103	30 -0.77	'62 N
16 C10	6 -0.806	2.315	58 1.11	95 C
17 H1	0.209	5 2.621	1 1.32	63 H
18 C18	8 -1.913	6 3.058	30 1.51	12 C
19 H1	9 -1.768	3.984	19 2.04	98 H
20 C20	0 -3.182	2.589	1.19	71 C
21 H2	1 -4.065	3 3.145	53 1.48	68 H
22 C22	2 -3.307	1 1.388	0.50	64 C
23 H2	3 -4.284	9 1.000	0.25	86 H

24 C24	-2.1602	0.6892	0.1508 C
25 N25	0.6116	-0.8453	1.4083 N
26 N26	-0.5755	-1.2093	1.9736 N
27 N27	1.7682	1.3532	0.4214 N
28 N28	2.8856	1.5829	-0.0034 N
29 N29	3.9411	1.8400	-0.3358 N
30 N30	-0.9321	1.1609	0.4520 N
31 N31	0.2730	2.0826	-2.0588 N
32 N32	0.1677	3.1969	-2.2732 N
33 N33	1.0142	-1.8661	3.2966 N
34 N34	-0.3199	-1.8077	3.0839 N
35 C35	1.5795	-1.2673	2.2610 C
36 C36	3.0510	-1.1021	2.1081 C
37 H37	3.5437	-1.7085	2.8672 H
38 H38	3.3817	-1.4117	1.1162 H
39 H39	3.3446	-0.0594	2.2512 H

Frequencies (mode, wavenumber / cm⁻¹, intensity / km mol⁻¹)

1	30.3532	0.6405	46	699.407	19,1782			
2	40.087	0.2204	47	700.846	121.355			
3	41.0717	0.342	48	717.331	16.8402			
4	47.1898	0.5085	49	736 754	0.2146			
5	58.391	5.5946	50	754.088	73,1658			
6	63.2532	1.8449	51	763 668	0 2941			
7	67.9118	2.0061	52	784 13	39.8216			
8	82.0148	4.8669	53	789 217	1 6623			
9	85.8697	2.2573	54	824.118	1.1506			
10	89.2287	1.2562	55	904 376	0 1578			
11	118.803	0.2257	56	911 921	1 3893			
12	148.534	3.0414	57	1003.99	7 1754			
13	161.209	0.2949	58	1006.34	0 2385			
14	165.037	0.594	59	1010 13	0 2436			
15	178.292	2.5944	60	1026.7	0.2126			
16	187.667	0.2207	61	1028.68	0.0617			
17	206.486	0.4701	62	1032.52	8 7687			
18	229.174	1.6713	63	1038.92	6 7957			
19	249.756	0.1034	64	1050.28	32 2972			
20	253.571	0.8335	65	1064.46	5 2964			
21	275.184	0.5209	66	1070.67	7 4537			
22	281.576	1.8883	67	1084.83	14 1971			
23	285.257	0.7125	68	1088.64	72 8912			
24	314.155	3.1919	69	1099.06	1 7467			
25	337.649	17.4083	70	1127.3	9 3981	91	1507.07	13 176
26	347.138	22.7608	71	1134.94	2 904	92	1507.07	43.470
27	378.287	3.7143	72	1150.63	1 105	92	1523.37	/1 6272
28	410.503	40.532	73	1171 48	12 8727	94	1611 /1	21 5464
29	418.54	25.2765	74	1185 76	11 5172	95	1622.26	22.5404
30	437.487	10.658	75	1195.2	12 5848	95	16/9 1	23.3137
31	463.426	0.7792	76	1291.86	7 1333	97	1662.41	19 0515
32	485.651	4.3879	77	1300.16	10 7051	90	22/0.2	512 224
33	486.919	1.934	78	1316 76	2 2483	99	2240.2	361.57
34	543.926	189.163	79	1332 57	14 2057	100	2230.01	1229 12
35	548.597	171.658	80	1342.99	17 9489	100	3051 /1	11 5174
36	560.529	283.512	81	1351.06	2 1795	107	3112.24	6 7397
37	561.683	31.8751	82	1369.57	162,864	102	31/12.24	6.0976
38	597.805	16.8354	83	1379 1	111 345	103	3190.84	1 3932
39	608.58	6.0696	84	1388 43	235 789	105	2191.84	4.3332
40	612.309	26.4707	85	1395.67	63.116	105	3210.52	1 2193
41	654.907	5.93	86	1411 71	59 6073	107	3212.01	2 919
42	667.604	0.8669	87	1464.54	21.8454	108	3215.36	0.37/3
43	674.419	24.1296	88	1482.33	37,4152	109	3224.05	5 1512
44	680.015	14.8569	89	1482.86	40.2585	110	3225.48	8 5721
45	692.479	106.254	90	1494.6	11.4719	111	3227 74	13 3772
								10.0772

5.9. *OC-6-33-*[Si(N₃)₃(*k*N(2)-mtz)(bpy)] (Table 4 entry j)

Gaussian log file name: eq-Si(N3)3(2-5-eq-CN4CH3)(bpy)_b3lyp_opt_freq Route: opt freq b3lyp/6-311g(d,p) nosymm geom=connectivity SMILES: CC:1:N:NN(N:1)[Si](N=[N]=N)(N=[N]=N)N=[N]=N.C:2:C:C(:N:C:2)C:3:C:C: C:C:N:3 Formula: $C_{12}H_{11}N_{15}Si$ Charge, multiplicity: 0, 1 Energy: -1574.9099754 a.u. Thermal correction to Gibbs Energy (298 K): 0.209359 a.u.

1 Si1	-0.1102	-0.3169	0.0946 Si
2 C2	0.3185	2.6670	0.0790 C
3 H3	-0.7508	2.6734	0.2300 H
4 C4	1.0505	3.8439	-0.0164 C
5 H5	0.5368	4.7946	0.0356 H
6 C6	2.4281	3.7678	-0.1716 C
7 H7	3.0276	4.6665	-0.2520 H
8 C8	3.0329	2.5175	-0.2135 C
9 H9	4.1049	2.4339	-0.3226 H
10 C10	2.2411	1.3771	-0.1103 C
11 N11	0.0142	-0.1573	3 -1.7264 N
12 N12	0.9035	1.4660	0.0213 N
13 C13	2.1890	-2.2472	0.0381 C
14 H14	1.3712	-2.9480	0.1382 H
15 C15	3.5180	-2.6382	-0.0601 C
16 H16	3.7674	-3.6907	-0.0328 H
17 C17	4.4976	-1.6617	-0.1918 C
18 H18	5.5432	-1.9332	2 -0.2722 H
19 C19	4.1188	-0.3246	б -0.2175 C
20 H20	4.8651	0.4511	-0.3150 H
21 C21	2.7690	0.0004	-0.1143 C
22 N22	0.1729	-0.1186	5 1.8870 N
23 N23	-0.4400	-0.7076	6 2.7566 N
24 N24	-0.9648	-1.2220	3.6236 N
25 N25	-0.6393	-2.0547	7 0.1348 N
26 N26	-1.7683	-2.5037	7 0.2148 N
27 N27	-2.7871	-2.9975	5 0.2886 N
28 N28	1.8298	-0.9576	5 0.0076 N
29 N29	-1.8224	0.4726	5 0.1385 N
30 N30	-2.3176	1.2729	0 1.0887 N
31 N31	-2.7380	0.1944	-0.7985 N
32 N32	-0.4506	-0.9448	3 -2.5279 N
33 N33	-0.8477	-1.6353	3 -3.3380 N
34 C34	-3.8079	0.8546	-0.3788 C
35 C35	-5.1258	0.8437	-1.0744 C
36 H36	-5.5042	1.8608	3 -1.1970 H

37 H37	-5.0265	0.3745	-2.0529 H
38 H38	-5.8626	0.2835	-0.4927 H
39 N39	-3.5601	1.5312	0.7719 N

Frequencies (mode, wavenumber / cm⁻¹, intensity / km mol⁻¹)

1	25.2098	0.1688		700.000	100.005			
2	31,519	0.3368	46	/02.222	169.635			
3	34,4111	1.0667	4/	/08.303	33.8467			
4	37 0615	1 1583	48	729.972	0.4563			
5	40 1242	0 1426	49	737.721	2.4782			
6	40 6728	0.6978	50	754.02	81.731			
7	51 4997	0.0508	51	764.13	2.1178			
, 8	63 4453	0.0000	52	785.113	39.4			
ğ	76 792	2 3789	53	787.932	0.5911			
10	88 2775	3 2698	54	827.779	0.5063			
11	90 500/	0.9799	55	903.222	0.5216			
12	107 146	0.0705	56	912.049	1.3349			
12	145 726	0.144	57	995.927	1.7489			
14	143.730	0.3333	58	1001.1	3.6195			
14	103.700	1 1101	59	1008.85	0.0489			
10	102.020	1.1101	60	1024.14	1.1042			
10	101.7	0.3612	61	1029.44	0.0874			
1/	186.298	0.1994	62	1039.23	3.0268			
18	234.652	2.6841	63	1043.13	25.1764			
19	245.544	1.8047	64	1051.1	29.4543			
20	254.783	1.18/4	65	1065.05	5.0771			
21	268.964	0.6486	66	1071.38	1.8449			
22	275.3	1.7102	67	1090.46	49.9695			
23	288.75	7.2152	68	1099.36	3,7001			
24	305.507	15.8465	69	1101.81	2,1553			
25	343.924	25.453	70	1131.91	25.8678	91	1511.39	42.4625
26	360.776	17.7012	71	1136	6 5596	92	1531.27	7.4894
27	378.663	7.7089	72	1151.83	0 6609	93	1541.36	58.5552
28	400.866	2.8649	73	1185.93	11 738	94	1611.5	27.3052
29	422.032	21.0287	74	1196.26	12 8637	95	1623.15	21,4506
30	430.536	6.3532	75	1217 13	45 6969	96	1646.61	26,2038
31	463.971	3.0054	76	1279.22	12 4388	97	1661.26	20,4925
32	468.612	115.325	70	1229.25	14 5452	98	2257.07	109 659
33	488.615	0.9262	70	1203.25	9.0979	99	2263 27	932 735
34	498.025	195.789	79	1316.05	10 / 07/	100	2292.96	1092.04
35	544.712	181.374	20	12/15/01	C /105	101	3043.4	18 7641
36	558.248	1.4059	00	1040.01	10.4100	102	3097.8	11.0563
37	586.961	26.1858	01	1001.01	10.3430	102	3134 73	6 9169
38	598.322	175.015	82	1360.01	13.8436	103	2109.47	4 9097
39	603.041	7.4419	83	1386.40	01./64	104	2100.47	4.0057
40	606.59	17.1357	84	1389.53	237.117	100	220700	J.4037
41	653.997	6.0278	85	1400.5	215.32	100	3207.30	4.3330
42	667.248	0.6155	86	1418.89	10.2688	100	3211	3.3434
43	674.847	21,9686	87	1466.81	32.724	108	3213.82	0.0941
44	676.748	57,3337	88	1479.62	9.75	109	3218.91	14.634
45	685.076	142 982	89	1481.47	72.2376	110	3223.78	4.8917
	000.070	172.002	90	1489.28	18.939	111	3236.46	35.5552

5.10. *OC-6-31-*[Si(N₃)(*k*N(2)-mtz)₃(bpy)] (Table 4 entry k)

Gaussian log file name: OC-6-13-Si(N3)(N4CMe)3(bpy)(2,5,2,5,2,5)_b3lyp-6-311g(d,p)2.out Route: opt freq b3lyp/6-311g(d,p) geom=connectivity SMILES: CC:1:N:NN(N:1)[Si](N=[N]=N)(C:2:N:NN(C)N:2)N3N:C(C):NN3.C:4:C:C:C(:N:C:4)C:5:C:C:C:C:N:5 Formula: $C_{16}H_{17}N_{17}Si$ Charge, multiplicity: 0, 1 Energy: -1840.5219035 a.u. Thermal correction to Gibbs Energy (298 K): 0.306058 a.u.

		· · ·	
1 Si1	-0.2111	0.0478	-0.2909 Si
2 C2	-1.9346	-3.4758	-0.4771 C
3 C3	-3.0505	-4.3913	-0.8505 C
4 H4	-3.5606	-4.7650	0.0415 H
5 H5	-2.6721	-5.2554	-1.4011 H
6 H6	-3.7745	-3.8610	-1.4687 H
7 C7	1.9169	-0.8096	-2.2196 C
8 H8	1.1379	-0.5331	-2.9151 H
9 C9	3.1622	-1.2741	-2.6185 C
10 H10	3.376	5 -1.382	1 -3.6734 H
11 C11	4.1065	5 -1.583	8 -1.6483 C
12 H12	5.0882	2 -1.948	3 -1.9266 H
13 C13	3.776	7 -1.419	6 -0.3094 C
14 H14	4.4940	0 -1.657	1 0.4629 H
15 C15	2.507	-0.956	9 0.0239 C
16 N16	-0.767	1 -1.772	8 -0.1990 N
17 N17	-0.0804	4 -2.790	0.3134 N
18 N18	-0.799	1 -3.873	7 0.1474 N
19 N19	-1.935	0 -2.168	7 -0.7088 N
20 N20	-0.654	3 0.231	5 -2.0285 N
21 N21	-1.756	0.322	1 -2.5282 N
22 N22	-2.745	1 0.417	0 -3.0763 N
23 N23	1.599	5 -0.662	6 -0.9263 N
24 C24	1.8040	3.431	7 -0.6632 C
25 C25	2.6510) 4.433	0 -1.3730 C

26 H26	3.4967	4.7359	-0.7511 H
27 H27	2.0747	5.3328	-1.6043 H
28 H28	3.0251	4.0114	-2.3060 H
29 C29	0.2029	-0.1709	2.7055 C
30 H30	-0.8381	0.1203	2.7225 H
31 C31	0.9190	-0.3953	3.8745 C
32 H32	0.4309	-0.2493	4.8289 H
33 C33	2.2428	-0.8006	3.7881 C
34 H34	2.8295	-0.9775	4.6815 H
35 C35	2.8071	-0.9875	2.5323 C
36 H36	3.8322	-1.3159	2.4377 H
37 C37	2.0323	-0.7572	1.4012 C
38 N38	0.6933	1.7289	-0.2068 N
39 N39	0.6085	2.5321	0.8497 N
40 N40	1.2993	3.6119	0.5823 N
41 N41	1.4457	2.2611	-1.1761 N
42 N42	0.7543	-0.3379	1.4962 N
43 C43	-1.8299	0.7416	0.4815 C
44 N44	-2.5427	0.2898	1.5543 N
45 N45	-2.4721	1.7546	-0.1047 N
46 N46	-3.5585	1.8825	0.6403 N
47 N47	-3.6232	1.0207	1.6448 N
48 C48	-4.5976	2.8613	0.3699 C
49 H49	-5.0186	2.6768	-0.6186 H
50 H50	-5.3609	2.7456	1.1357 H
51 H51	-4.1704	3.8633	0.4060 H

Hredulencies (mode wavenumber / cm - intensity / km)	mol *)
requencies (mode, wavenumber / cm , mensity / km	moi j

1	28,9738	0.5641	50	688.808	89.9576	-		
2	32,8118	0.0656	51	700.281	1.7727	100	1289.34	12.8953
3	37 6897	1 4346	52	708.352	3.4744	101	1310.29	14.7922
4	42 2998	0.3266	53	711.35	74.5504	102	1318.74	15.736
5	46 7032	0.6062	54	729.762	37.3146	103	1336.57	11.2671
6	51 4482	1 2365	55	730.121	18.9889	104	1350.02	5.3088
7	52 3161	0.3619	56	731.16	4.1555	105	1362.58	13.8484
8	56 7744	3 3857	57	737.515	0.7506	106	1390	6.5587
9	59 5714	2 0371	58	739.89	2.3177	107	1390.43	5.9301
10	60 5823	1 2745	59	753.976	76.5772	108	1408.97	7.3397
11	69 1476	0.3949	60	762.445	1.744	109	1417.16	22.8257
12	80 2934	3 1296	61	771.967	6.1011	110	1417.95	12.3647
13	84 6577	5 5875	62	784.869	32.6541	111	1419.85	161.656
14	91 7375	0.0506	63	/90.002	0.31/6	112	1433.19	17.4864
15	114 007	0.1125	64	824.292	0.6033	113	1449.79	0.843
16	119.032	1 6634	65	900.026	0.3651	114	1470.17	36.7429
17	143.008	1 2449	66	909.416	1.6122	115	1479.57	10.8316
18	155 604	0 1924	6/	1000 70	2.0003	116	1480.39	8.1968
19	165.483	0.1524	00	1000.76	3.0270	117	1481.31	4.0159
20	171 714	0.0921	03 70	1011.63	1.0003	118	1481.91	75.5944
20	187.847	1 9466	70	1077.61	0.7198	119	1489.92	24.1025
27	198 7/17	3 2654	72	1029.58	18 9674	120	1490.09	15.5203
22	216 097	3 6331	73	1023.50	20.8201	121	1508.87	6.5096
23	218,699	2.61	74	1038.38	9 0822	122	1516.12	39.4492
24	235.486	1 4002	75	1048.43	21.6773	123	1536.06	83.1405
26	2/9 733	1 7085	76	1049.54	6.9741	124	1536.69	27.6109
20	243.733	0.6459	77	1052.34	14,9424	125	1539.44	9.8996
20	270.8	1 0358	78	1054.09	18.4709	126	1613.27	31.8856
20	2270.0	1.0330	79	1066.6	4.3234	127	1623.76	21.9754
20	202.032	8 9811	80	1069.93	1.7433	128	1651.08	37,7282
21	202.000	0.3011	81	1071.51	1.9701	129	1665.91	20.5816
22	221 124	2 1100	82	1088.69	10.7444	130	2293.07	789.604
32	259 665	2.1133	83	1095.34	36.084	131	3040.37	25.8727
24	270 024	0.0222	84	1099.76	1.9467	132	3041.21	22,202
34	205 9/1	4 4021	85	1101.57	4.4932	133	3063.12	23.3544
36	/01 833	7 1762	86	1102.17	12.078	134	3092.82	12.56
30	401.000	9 292	87	1137.42	1.6467	135	3094.5	12,7455
20	414.054	0.203	88	1146.61	30.463	136	3128.46	9.5651
20	450.150	6 1012	89	1147.77	0.1261	137	3132.72	7.4226
33	450.705	6.1013	90	1150.81	37.9453	138	3134.98	5,9383
40	402.041	19 765	91	1153.99	0.2723	139	3169.04	1.5576
41	400.01 520.020	259.915	92	1187.23	13.424	140	3188.59	5.3543
42	520.030	200.010	93	1197.63	15.2501	141	3189 42	12 5295
43	556 002	2 1555	94	1223.32	41.3351	142	3203.49	80.4175
44	500.005	177 /02	90	1220.20	7.43ZZ	143	3210.85	4 7975
40	597 /76	18 7661	30 97	1220.10	40.3230	144	3213.56	8.8823
40	65/ 05	5 0100	90	1200.00	10.0400	145	3216.31	9 3545
47	604.50	0.7005	99	12/0.0	4.2200	146	3226.72	1.4718
40	676 296	42 1157	100	1289 34	12 8953	147	3230.54	29 4123
43	0/0.330	45.1157	100	1203.34	12.0000		0200.01	20.1120

5.11. *OC-6-33-*[Si(N₃)(*k*N(2)-mtz)₃(bpy)] (Table 4 entry k)

Gaussian log file name: OC-6-33-Si(N3)(N4CMe)3(bpy)(2,5,2,5,2,5)_stereoisomer_b3lyp-6-311g(d,p)4

Route: opt freq b3lyp/6-311g(d,p) nosymm geom=connectivity SMILES: CC:1:N:NN(N:1)[Si](N=[N]=N)(C:2:N:NN(C)N:2)N3N:N:C(C):N3.C:4:C:C:C(: N:C:4)C:5:C:C:C:C:N:5 Formula: $C_{16}H_{17}N_{17}Si$ Charge, multiplicity: 0, 1 Energy: -1840.5132808 a.u. Thermal correction to Gibbs Energy (298 K): 0.303454 a.u.

Cartesian Coordinates (x y z format)

1 Si1 0.0003 -0.0318 -0.4412 Si 2 C2 0.0335 -0.5368 3.4555 C 3 C3 0.5042 -1.1871 4.7120 C 4 H4 -0.3421 -1.4529 5.3491 H 1.1463 -0.5094 5 H5 5.2815 H 6 H6 1.0734 -2.0864 4.4765 H 7 C7 -1.4519 2.6046 -0.5235 C 8 H8 -0.4437 2.9844 -0.5266 H 9 C9 -2.5440 3.4580 -0.5836 C 10 H10 -2.3815 4.5265 -0.6278 H 11 C11 -3.8212 2.9140 -0.5827 C 12 H12 -4.6961 3.5514 -0.6269 H 13 C13 -3.9627 1.5343 -0.5262 C 14 H14 -4.9464 1.0875 -0.5284 H 15 C15 -2.8233 0.7365 -0.4662 C 16 N16 -0.2095 -0.0246 1.4507 N 17 N17 -1.0092 0.7793 2.1486 N 18 N18 -0.8690 3.4138 N 0.4717 19 N19 0.4548 -0.8702 2.2417 N 20 N20 -0.2534 0.0001 -2.2436 N 21 N21 0.5796 -0.2764 -3.0864 N 22 N22 1.2966 -0.5246 -3.9308 N 23 N23 -1.5912 1.2757 -0.4642 N 24 C24 2.5925 2.8124 0.2964 C 25 C25 3.4663 3.6506 1.1666 C 26 H26 3.3503 4.7102 0.9273 H 27 H27 4.5184 3.3938 1.0177 H 28 H28 3.2112 3.4901 2.2139 H 29 C29 -1.5584 -2.6632 -0.3151 C 30 H30 -0.5573 -3.0819 -0.3232 H -3.4640 31 C31 -2.6936 -0.2639 C 32 H32 -2.5781 -4.5387 -0.2138 H 33 C33 -3.9455 -2.8663 -0.2789 C -4.8488 34 H34 -3.4632 -0.2377 H 35 C35 -4.0247 -1.4810 -0.3468 C 36 H36 -4.9875 -0.9905 -0.3544 H 37 C37 -2.8517 -0.7336 -0.3979 C 1.4227 38 N38 1.1911 -0.3709 N 39 N39 1.7143 1.9894 -1.4619 N 40 N40 2.5930 2.8694 -1.0608 N 41 N41 1.7255 1.9207 0.7520 N -1.3251 42 N42 -1.6386 -0.3816 N 43 C43 1.4235 -1.3428 -0.4250 C 44 N44 1.3658 -2.6980 -0.5809 N 45 N45 2.6986 -0.9483 -0.3614 N 46 N46 3.3648 -2.0880 -0.4654 N 2.5909 -3.1527 47 N47 -0.5981 N 48 C48 4.8157 -2.1633 -0.4641 C 49 H49 5.1996 -1.7418 0.4647 H 50 H50 5.0873 -3.2131 -0.5460 H

51 H51 5.2088 -1.6020 -1.3118 H

Frequencies (mode, wavenumber / cm⁻¹, intensity / km mol⁻¹)

1	18 1206	3 0111	50	685,258	101.591	100	1286.7	19.8123
2	23 9782	1 5829	51	698.008	0.3675	101	1310.58	6.4135
2	21 9392	0.1311	52	709 943	38 6382	102	1322.95	14.4152
1	34,0004	0.1311	53	711 715	62 5566	103	1334.7	10.4026
5	38 3833	0.1223	54	730.926	15,1189	104	1347.3	4,1193
6	40 1752	0.2202	55	731 13	3 0713	105	1369.4	17 3225
7	40.1755	0.3474	56	732 33	43 5307	106	1388.07	1 6069
6	42.0202	0.1207	57	739 391	3 3892	100	1391 93	96 9834
0	47.3032	0.4232	58	742 038	5 452	107	1202.25	00.2520
10	02.423 E7 200E	0.0000	59	751 92	70 6636	100	1412.24	0 2022
10	07.2000	1.3493	60	760 686	0.8718	105	1413.34	0.3323
12	70.077	1.2462	61	770 295	4 4 1 9	110	1410.11	11.4617
12	/6.3231	4.2043	62	783 453	32 5434	111	1419.2	12.4/64
13	81.5008	1.9476	63	788 591	0.4819	112	1425.79	12.2448
14	84.1439	2.4/85	64	824 635	2 0551	113	1449.52	0.9443
15	96.1774	3.0364	65	893 505	1 5149	114	1473.14	43.8526
16	108.012	0.5306	20	911 892	0.9813	115	1479.3	10.4633
1/	148./88	0.1488	67	980.936	0.6068	116	1480.02	7.4096
18	156.465	0.5741	68	997 843	5 5578	117	1480.87	8.3204
19	166.25	0.2108	69	1001.36	2 1501	118	1482.19	61.3469
20	168.874	0.967	70	1014.04	0.196	119	1488.67	18.4998
21	188.436	0.8899	70	1020.69	0.2255	120	1491.47	20.2403
22	202.522	2.7808	71	1020.00	5 2520	121	1508.67	7.8223
23	211.385	1.5652	72	1033.33	42.2530	122	1522.31	40.5989
24	224.985	1.9326	73	1037.70	42.202	123	1536.05	54,1589
25	236.553	2.9165	74	1043.22	12 0202	124	1542.35	53 0352
26	240.565	2.4037	75	1040.33	14 2214	125	1543.16	16 3099
27	256.83	0.2094	70	1040.01	14.3314	126	1613 11	33 498
28	260.866	1.6704	70	1053.51	0.7004	120	1625.33	20 6133
29	283.081	0.7623	70	1007.00	1 5100	120	1650 71	22.0133
30	298.855	13.142	/5	1007.02	2.0459	120	1050.71	10 CC/
31	337.058	1.8389	00	1070.11	2.0400	125	1004.03	742 752
32	346.13	2.4012	01	10/0.50	7.0010	130	22/2.31	743.703
33	366.379	10.8063	02	1091	7.3013	131	3040.17	22./54
34	373.75	5.9495	83	1098.72	10.82/6	132	3041.08	24.7802
35	390.459	8.8132	84	1101.8	2.9804	133	3063.64	23.5521
36	403.355	9.1521	00	1103	20.104/	134	3093.06	12.8121
37	408.387	20.2539	86	1103.33	2./068	135	3093.81	12.462
38	426.145	5.8588	8/	1130.71	32.919	136	3129.53	8.5713
39	456.524	15.4513	88	1138.75	2.2229	137	3131.89	8.2639
40	457.352	68.2813	89	1144.23	29.9719	138	3135.28	6.1396
41	481.075	7.1956	90	1147.59	0.3145	139	3140.07	246.464
42	497,565	214,792	91	1104.77	0./918	140	3168.99	1.5912
43	524,702	158.907	92	1188.8	15.0842	141	3187.76	4.1642
44	553.663	0.1959	93	1199.65	15.9049	142	3190	4.442
45	576.324	262,258	94	1221.63	54.3921	143	3209.85	4.013
46	599 241	11 1671	32	1226.82	11.384/	144	3212.96	0.8054
47	652 589	8 9159	96	1228.91	30.5769	145	3216.03	0.1302
48	668 754	9 7038	97	12/2.41	16.4139	146	3227 77	4 1967
49	674 069	23 7897	98	1282.33	17.3869	147	3269 76	10 6796
- TV	077.000	20.1001	44	1283.41	445/	177	0200.70	10.07.00

5.12. Transition state 4a / 4b

Gaussian log file name: Si(N3)2(N4CMe)2(bpy)_b3lyp_6-311G(d,p)_(2,5-1,5)_Xray_TS_search_no_restrictions_2 Route: opt freq b3lyp/6-311g(d,p) nosymm geom=connectivity SMILES: CC:1:NN:NN:1.CC:2:N:NN(N:2)[Si](N=[N]=N)(N=[N]#N)N:3:C:C:C:C:3C:4: C:C:C:C:N:4 Formula: $C_{14}H_{14}N_{16}Si$ Charge, multiplicity: 0, 1 Energy: -1707.6830073 a.u. Thermal correction to Gibbs Energy (298 K): 0.255555 a.u.

			· •
1 Si1	0.0967	-0.5420	0.0286 Si
2 C2	3.7858	-0.2300	-0.2800 C
3 C3	4.7579	-1.2664	0.1753 C
4 H4	5.7601	-1.0104	-0.1704 H
5 H5	4.5000	-2.2490	-0.2316 H
6 H6	4.7608	-1.3461	1.2640 H
7 C7	-0.7618	0.9342	-2.4088 C
8 H8	-0.5628	-0.0179	-2.8762 H
9 C9	-1.2182	2.0425	-3.1105 C
10 H1	0 -1.3849	1.9630	-4.1763 H
11 C1	1 -1.4471	3.2294	-2.4271 C
12 H12	2 -1.802	4.1087	-2.9504 H
13 C13	3 -1.2074	3.2804	-1.0579 C
14 H14	4 -1.3696	6 4.1947	-0.5046 H
15 C15	5 -0.7396	5 2.1401	-0.4185 C
16 N1	6 2.0652	2 1.0056	-0.4534 N
17 N1'	7 2.8738	3 1.3164	-1.4400 N
18 N13	8 3.9790	0.5732	-1.3363 N
19 N19	9 2.6049	0.0225	0.3019 N
20 N20	0.5217	-1.3790	-1.4692 N
21 N2	1 1.3530	-2.2699	-1.5511 N
22 N22	2 2.0998	3 -3.1044	-1.7116 N
23 N2	3 -0.5286	6 0.9942	-1.0931 N
24 C24	4 -3.7261	-1.3757	-0.2053 C
25 C25	5 -5.0069	-1.6820	-0.9029 C
26 H2	6 -5.8068	-1.0317	-0.5418 H
27 H2'	7 -5.310	-2.7144	-0.7120 H
28 H2	8 -4.8906	-1.5459	9 -1.9778 H
29 C29	0.5051	0.6276	2.6306 C
30 H30	0.8797	-0.3648	2.8312 H
31 C31	0.4624	1.6372	3.5794 C
32 H32	2 0.8182	2 1.4370	4.5809 H
33 C33	-0.0361	2.8829	3.2193 C
34 H34	4 -0.084	l 3.6884	3.9421 H
35 C35	5 -0.4643	3.0917	1.9136 C
36 H3	6 -0.8400	4.0568	1.6054 H
37 C37	7 -0.3863	3 2.0480	1.0016 C
38 N3	8 -1.7295	-0.9357	0.1954 N
39 N39	9 -2.3350	-1.0637	7 1.3791 N
40 N40	0 -3.5898	-1.3368	3 1.1455 N
41 N4	1 -2.5802	2 -1.1195	5 -0.8226 N
42 N42	2 0.6046	5 -1.7824	1.2344 N
43 N43	3 0.1211	-2.9007	1.2949 N
44 N44	4 -0.268	-3.9594	1.4169 N
45 N43	5 0.0763	0.8339	1.3756 N

Frequencies (mode, wavenumber / cm⁻¹, intensity / km mol⁻¹)

1	-178.456	8.0465	34	423.893	74,4818	67	1026.7	0.24			
2	21,2954	2.2467	35	435.374	92.0291	68	1036.56	22.3195			
3	32,4162	0.4663	36	456.612	16.3834	69	1040.54	23,5409			
4	37,335	0.9283	37	499.126	83.4313	70	1042.56	2,4803	300	1437.62	64 4799
5	40 5057	1.3357	38	499.125	2.5224	71	1044.34	6.2274	100	1466 72	20 610
6	43 6463	0.1099	39	554.342	30.0981	72	1058.72	27.2821	102	1476.68	7 1963
7	49.794	0.3408	40	555.561	102,09	73	1064.62	0.9478	103	1479 94	131516
0	56,8152	0.503	41	588.436	13.9539	74	1068.69	9.8767	104	1495.47	64 9079
9	57.3958	0.0991	42	591.615	29.2705	75	1078.8	4.017	105	1497 55	10.957
10	66.9173	1.1588	43	601.407	130.251	76	1090.54	52,2197	106	1498-83	65.0492
11	72,4036	1.1057	44	662.227	0.9474	77	1091.74	10.5423	107	1501.89	4 2946
12	76.0256	0.6785	45	668.408	1.6124	78	1099.66	6.9405	108	1509.08	41,3919
13	77.8964	0.6832	46	680.575	36.8022	79	1111.18	9.8856	109	1530.75	9 5094
14	89.6361	4.3397	47	681.912	22.7873	80	1132.29	42.8476	110	1609.91	20,9903
15	96,7061	13.542	48	692.118	54.4208	81	1137.81	1.8561	111	1620.95	18.0733
16	117,313	55.0371	49	696.399	41.1407	82	1152.6	6.903	112	1652.7	38.6977
17	126,523	5.3047	50	709.37	0,7607	83	1154.93	1.1526	113	1667.14	17.5525
18	160.415	8 3054	51	731.084	1.0817	84	1187.87	10.5822	114	2264.64	458.3
19.	180.479	5.0935	52	732592	25.0706	85	1195.25	11.2183	115	2292.82	880.219
20	198.26	2.2493	53	735.188	111.882	86	1222.43	38.6073	116	3034.82	22.3744
21	215.058	1.6211	54	741.741	59.0055	87	1228.08	5.2324	117	3037.84	17.3429
22	236.14	1.9075	55	749.502	11.2108	99	1276.81	34,6455	118	3078.23	9.2698
23	242.053	0.7166	56	762.524	0.8161	89	1294.33	9.8791	119	3091.62	17.0735
.24	251,628	1.5553	57	783.289	44.9885	-90	1303.97	14.98	120	3112.36	7.7177
25	272.897	1.4061	58	791.538	3.1766	91	1321.03	0.2112	121	3124.58	12,6608
26	283.938	4.1565	59	814,232	0.9269	92	1344.57	10.2749	122	3192.73	4.0353
27	296.494	5.196	60	897 957	0.164	93	1347.31	33,8329	123	3193.53	3.7408
28	299.774	3.1722	63	906.444	1.6545	94	1354.82	0.8451	124	3213.69	1.4485
29	318,108	8.1908	62	981 627	5 4467	95	1378.81	176 311	125	3216.27	0.5464
30	341.791	13.1244	63	987 607	3,8498	96	1386.16	9.191	126	3218.5	0.6022
31	305.519	30.4308	64	996 994	0.6234	97	1392.49	207.497	127	3226.24	0.876
32	390.342	2,7459	65	1006 53	0.2117	98	1396.29	8,4809	128	3239.35	25.2129
33	406.929	139.441	88	1021.03	0.39	99	1405.5	24.409	129	3246.2	11.3585

5.13. OC-6-22-[Si(N₃)₄(bpy)] (1)

Gaussian log file name: Si(N3)4(bpy)_b3lyp-6-311G(d,p) Route: opt freq b3lyp/6-311g(d,p) nosymm geom=connectivity SMILES: N=[N]=N[Si](N=[N]=N)(N=[N]=N)N=[N]=N.C:1:C:C:C(:N:C:1)C:2:C:C:C:N: 2 Formula: $C_{10}H_{18}N_{14}S_$

Charge, multiplicity: 0, 1 Energy: -1442.0 923545 a.u. Thermal correction to Gibbs Energy (298 K): 0.162571 a.u.

Cartesian Coordinates (x y z format)

 1 C1
 -2.8362
 -2.9089
 0.5743 C

 2 C2
 -0.4944
 -2.4913
 0.3155 C

 3 C3
 -1.5337
 -3.3882
 0.5330 C

 4 H4
 -3.6684
 -3.5815
 0.7430 H

 5 H5
 0.5441
 -2.7906
 0.2765 H

 6 H6
 -1.3117
 -4.4386
 0.6662 H

 7 N7
 -0.7165
 -1.1803
 0.1453 N

 8 Si8
 0.7927
 0.2346
 -0.1343 Si

 9 N9
 1.8467
 1.6755
 -0.4153 N

 10 N10
 2.6026
 2.1346
 0.4257 N

 11 N11
 3.3348
 2.6237
 1.1417 N

12 N12	0.4937	0.0541	-1.9468 N
13 N13	0.4909	-1.0042	-2.5379 N
14 N14	0.4653	-1.9674	-3.1486 N
15 N15	0.6502	0.5123	1.6912 N
16 N16	0.8864	-0.3334	2.5305 N
17 N17	1.0791	-1.0845	3.3645 N
18 C18	-1.9786	-0.7023	0.1818 C
19 C19	-2.0851	0.7520	-0.0290 C
20 C20	-0.8794	2.6968	-0.4425 C
21 H21	0.1052	3.1152	-0.6008 H
22 C22	-2.0405	3.4570	-0.4874 C
23 H23	-1.9761	4.5202	-0.6770 H
24 C24	-3.2628	2.8265	-0.2881 C
25 H25	-4.1875	3.3902	-0.3147 H
26 N26	-0.9070	1.3799	-0.2107 N
27 N27	2.0097	-1.1151	0.0171 N
28 N28	3.1089	-1.1150	-0.5087 N
29 N29	4.1484	-1.1780	-0.9610 N
30 C30	-3.0627	-1.5483	0.3962 C
31 C31	-3.2865	1.4561	-0.0597 C
32 H32	-4.0694	-1.1557	0.4251 H
33 H33	-4.2270	0.9444	0.0889 H

Frequencies	(mode,	wavenumber /	′ cm ⁻¹	, intensity	/ km mol ⁻¹)
-------------	--------	--------------	--------------------	-------------	------------------------	---

1 2	23.461	0 6601
2	05.054	0.0001
-	35.351	1.1854
3	37.1827	0.3161
4	39.6294	0.141
5	45.0322	0.2/41
6	66.5861	0.43
7	71.2464	0.7311
8	82.831	1.0029
9	91.2418	1.6639
10	115.388	1.5698
11	118.754	0.0442
12	157.293	0.8187
13	174.355	0.3316
14	181.286	0.359
15	201.82	0.4948
16	238.007	3.3562
17	261.787	0.4843
18	264.514	1.2604
19	277.705	1.284
20	289.171	1.9677
21	317.08	14.2526
22	347.754	36.9169
23	363.526	27.2865
24	392.631	24.7422
25	430.401	57.3463
26	437.228	6.3632
27	463.529	1.4318
28	481.926	3.732
29	490.286	1.8964
30	542.409	250.234
31	548.885	133.261
32	563.813	1.2692
33	577.853	253.082
34	598.254	28.1629
35	604.519	13.5009
36	607.042	3,1132
37	610.985	42.9052
38	650.179	7.8911
39	667.115	1,4403
40	669.572	13.362
41	677 051	4 7293
42	684 302	56 0669
43	697 301	120 203
44	708 941	153.88
45	755 763	54 2194
46	763 871	0.0655
47	784 519	43 8362
	787 791	0.6324
48	101 1.1	and the first state of the stat
48 49	825 522	0.0682

5.14. Calculated stick spectra

Fig. S12. Calculated stick spectra of *OC-6-12*-[Si(N₃)₄(bpy)], *OC-6-23*-[Si(N₃)₃($\kappa N(1)$ -mtz)(bpy)] (**i**), *OC-6-23*-[Si(N₃)₃($\kappa N(2)$ -mtz)(bpy)] (**b**) and *OC-6-33*-[Si(N₃)₃($\kappa N(2)$ -mtz)(bpy)] (**j**)

6. References

(1) Portius, P.; Filippou, A. C.; Schnakenburg, G.; Davis, M.; Wehrstedt, K.-D. Angew. Chem. Int. Ed. **2010**, 49, 8013.

(2) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; G. E. Scuseria; Robb, M. A.;
(2) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; G. E. Scuseria; Robb, M. A.;
(2) Cheeseman, J. R.; J. A. Montgomery, J.; T. Vreven; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; J. Tomasi; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; N. Rega;
Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; K. Toyota; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; O. Kitao; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.;
Hratchian, H. P.; J. B. Cross; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; O.
Yazyev; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; P. Y. Ayala; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;
M. C. Strain; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;
Ortiz, J. V.; Cui, Q.; Baboul, A. G.; S. Clifford; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; P. Piskorz; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; M. A. Al-Laham; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; P. M. W. Gill; Johnson, B.; Chen,
W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Revision B.01* 2003, *Gaussian, Inc., Pittsburgh PA*

(3) V2.1 Bruker Nonius Madison, Apex II software.

(4) SHELXTL, An integrated system for solving and refining crystal structures from diffraction data (Revision 5.1), Bruker AXS LTD.