## **Supporting Information**

## Dialkylboron Guanidinates: Syntheses, Structures and Carbodiimide De-insertion Reactions

Antonio Antiñolo, \*a Fernando Carrillo-Hermosilla, a Rafael Fernández-Galán, María Pilar Montero-Rama, Alberto Ramos, \*b Elena Villaseñor, Rene S. Rojas<sup>c</sup> and Antonio Rodríguez-Diéguez<sup>d</sup>

<sup>*a*</sup> Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Campus Universitario, E-13071 Ciudad Real, Spain.

<sup>b</sup> Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Inorgánica, Orgánica y Bioquímica, Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, Campus Universitario, E-13071 Ciudad Real, Spain.

<sup>c</sup> Pontificia Universidad Católica de Chile. Facultad de Química, Vicuña Makenna 4860, Casilla 306, Correo 22, Santiago de Chile.

<sup>*d*</sup> Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain.

**Table S1**. Equilibrium constants (K<sub>eq</sub>) for the carbodiimide de-insertion reaction of compound **1** at different temperatures in toluene- $d_8$ . ( $K_{eq} = \frac{[10][DIC]}{[1]}$ ;  $[1]_0 = 5.70 \cdot 10^{-2}$ 

M).

| T (°C) | [1] (M)               | [10] = [DIC] (M) | $K_{eq}(M)$           |
|--------|-----------------------|------------------|-----------------------|
| 25     | 3.31.10-2             | 2.39.10-2        | 1.73.10-2             |
| 50     | 1.97.10-2             | 3.73.10-2        | 7.06.10-2             |
| 60     | 8.84.10-3             | 4.82.10-2        | 2.63.10-1             |
| 70     | 6.50·10 <sup>-3</sup> | 5.05.10-2        | 3.93.10-1             |
| 80     | 3.39.10-3             | 5.36.10-2        | 8.49·10 <sup>-1</sup> |

**Table S2**. Rate constants  $(k_1)$  for the carbodiimide de-insertion reaction of compound 1 at different temperatures in toluene- $d_8$ .

| T (°C) | $k_{l}$ (s <sup>-1</sup> ) |
|--------|----------------------------|
| 25     | 1.83(2).10-6               |
| 50     | $2.51(3) \cdot 10^{-5}$    |
| 60     | 1.31(3).10-4               |
| 70     | 3.8(1).10-4                |
| 80     | 9.0(4) · 10-4              |



**Figure S1.** Van't Hoff plot (ln K<sub>eq</sub> vs 1/T) for the carbodiimide de-insertion reaction of compound 1 ( $\Delta H^{\circ} = 63(6)$  KJ mol<sup>-1</sup>,  $\Delta S^{\circ} = 175(18)$  J mol<sup>-1</sup> K<sup>-1</sup>).

<u>Van't Hoff equation</u>:  $\ln K_{eq} = \frac{-\Delta H^{\circ}}{R} \left(\frac{1}{T}\right) + \frac{\Delta S^{\circ}}{R}$ 











**Figure S2.** First order rate plot (ln [1] vs t) for the carbodiimide de-insertion reaction of compound 1 at (a) 25 °C, (b) 50 °C, (c) 60 °C, (d) 70 °C, (e) 80 °C.

 $1 \xrightarrow{k_1}_{k_{-1}} 10 + CDI$ Assuming:  $k_{-1}[10][CDI] \ll k_1[1]$ ,  $\ln [1] = \ln [1]_0 - k_1 t$ 



**Figure S3.** Arrhenius plot (ln  $k_1$  vs 1/T) for the carbodiimide de-insertion reaction of compound 1 ( $E_a = 101(5)$  KJ mol<sup>-1</sup>).

<u>Arrhenius equation</u>:  $\ln k_1 = \frac{-E_a}{R} \left(\frac{1}{T}\right) + \ln A$ 



**Figure S4.** Eyring plot (ln  $k_l/T$  vs 1/T) for the carbodiimide de-insertion reaction of compound 1 ( $\Delta H^{\ddagger} = 98(5)$  KJ mol<sup>-1</sup>,  $\Delta S^{\ddagger} = -27(16)$  J mol<sup>-1</sup> K<sup>-1</sup>).

<u>Eyring equation</u>:  $\ln\left(\frac{k_1}{T}\right) = \frac{-\Delta H^{\ddagger}}{R}\left(\frac{1}{T}\right) + \frac{\Delta S^{\ddagger}}{R} + \ln\left(\frac{k_B}{h}\right)$ 





Figure S5.  ${}^{1}$ H (a),  ${}^{13}$ C{ ${}^{1}$ H} (b) and  ${}^{11}$ B (c) NMR spectra for compound 1 (diastereomer mixture).







Figure S6. <sup>1</sup>H (a), <sup>13</sup>C{<sup>1</sup>H} (b) and <sup>11</sup>B (c) NMR spectra for compound 2 (diastereomer mixture).







Figure S7.  ${}^{1}H$  (a),  ${}^{13}C{}^{1}H$  (b) and  ${}^{11}B$  (c) NMR spectra for compound 3.







Figure S8.  ${}^{1}H$  (a),  ${}^{13}C{}^{1}H$  (b) and  ${}^{11}B$  (c) NMR spectra for compound 4.





Figure S9.  ${}^{1}H$  (a),  ${}^{13}C{}^{1}H$  (b) and  ${}^{11}B$  (c) NMR spectra for compound 5.







Figure S10.  ${}^{1}H$  (a),  ${}^{13}C{}^{1}H$  (b) and  ${}^{11}B$  (c) NMR spectra for compound 6.







Figure S11.  ${}^{1}H$  (a),  ${}^{13}C{}^{1}H$  (b) and  ${}^{11}B$  (c) NMR spectra for compound 7.



B<sup>utto</sup>Cy Cy

<sup>i</sup>Pr、

)N<sup>.</sup> H

ÌN´ | <sup>/</sup>Pr



Figure S12.  ${}^{1}H$  (a),  ${}^{13}C{}^{1}H$  (b) and  ${}^{11}B$  (c) NMR spectra for compound 8.







Figure S13.  ${}^{1}H$  (a),  ${}^{13}C{}^{1}H$  (b) and  ${}^{11}B$  (c) NMR spectra for compound 9.







**Figure S14.** <sup>1</sup>H (a), <sup>13</sup>C{<sup>1</sup>H} (b) and <sup>11</sup>B (c) NMR spectra for compound **10** (diastereomer mixture).







Figure S15.  ${}^{1}H$  (a),  ${}^{13}C{}^{1}H$  (b) and  ${}^{11}B$  (c) NMR spectra for compound 11.