Electronic Supplementary Information for:

Di- and trinuclear rare-earth metal complexes supported by 3-amido

appended indolyl ligands: Synthesis, characterization and catalytic activity

towards isoprene 1,4-cis polymerization

Guangchao Zhang,^{a,†} Baojia Deng,^{a,†} Shaowu Wang,^{*a, b} Yun Wei,^a Shuangliu Zhou,^a Xiancui Zhu,^a Zeming Huang,^a and Xiaolong Mu^a

[†] Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of

Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal

University, Wuhu, Anhui 241000, P. R. China

[‡] State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry,

Chinese Academy of Sciences, Shanghai 200032, P. R. China

1.	Table S1. Crystallographic Data for Complexes 1 – 12 4
Mo	lecular structure of the complexes
	Figure S1. Molecular structure of complex 1. Thermal ellipsoids are set at 30% probability. Hydrogen
	atoms are omitted for clarity
	Figure S2. Molecular structure of complex 2. Thermal ellipsoids are set at 30% probability. Hydrogen
	atoms are omitted for clarity
	Figure S3. Molecular structure of complex 3. Thermal ellipsoids are set at 30% probability. Hydrogen
	atoms are omitted for clarity
	Figure S4. Molecular structure of complex 4. Thermal ellipsoids are set at 30% probability. Hydrogen
	atoms are omitted for clarity
	Figure S5. Molecular structure of complex 5. Thermal ellipsoids are set at 30% probability. Hydrogen
	atoms are omitted for clarity
	Figure S6. Molecular structure of complex 6. Thermal ellipsoids are set at 30% probability. Hydrogen
	atoms are omitted for clarity
	Figure S7. Molecular structure of complex 7. Thermal ellipsoids are set at at 30% probability.
	Hydrogen atoms are omitted for clarity
	Figure S8. Molecular structure of complex 8. Thermal ellipsoids are set at 30% probability. Hydrogen
	atoms and the tertiary butyl groups on N2, N4, N6, N8 atoms are omitted for clarity9
	Figure S9. Molecular structure of complex 9. Thermal ellipsoids are set at 30% probability. Hydrogen
	atoms and the tertiary butyl groups on N2, N4, N6, N8 atoms are omitted for clarity10

Figure S10. Molecular structure of complex 10. Thermal ellipsoids are set at 30% probability.
Hydrogen atoms and the tertiary butyl groups on N2, N4, N6, N8 atoms are omitted for clarity10
Figure S11. Molecular structure of complex 11. Thermal ellipsoids are set at 30% probability.
Hydrogen atoms are omitted for clarity
Figure S12. Molecular structure of complex 12. Thermal ellipsoids are set at 30% probability.
Hydrogen atoms are omitted for clarity
¹ H NMR and ¹³ C NMR spectra of complex 3, 6 and 9
Figure S13. ¹ H NMR spectrum of complex 3 (300 MHz, C ₆ D ₆ , 25 °C, * indicates impurities)12
Figure S14. ¹³ C NMR spectrum of complex 3 (75 MHz, C ₆ D ₆ , 25 °C)12
Figure S15. ¹ H NMR spectrum of complex 6 (300 MHz, C ₆ D ₆ , 25 °C)
Figure S16. ¹³ C NMR spectrum of complex 6 (75 MHz, C ₆ D ₆ , 25 °C)
Figure S17. The reaction of complex 3 with THF at the NMR scale (300 MHz, 25 °C)14
Figure S18. ¹ H NMR spectrum of complex 9 (300 MHz, C ₇ D ₈ , TMS, 25 °C, * indicates solvent
residual peak)
Figure S19. ¹³ C NMR spectrum of complex 9 (75 MHz, C ₇ D ₈ , TMS, 25 °C)
Figure S20. ¹ H NMR spectrum of complex 12 (300 MHz, C ₇ D ₈ , 25 °C, * indicates solvent residual
peak)
Figure S21. ¹³ C NMR spectrum of complex 12 (75 MHz, C ₇ D ₈ , 25 °C)
Figure S22. ¹ H NMR spectrum of complex 6 (300 MHz, CD ₂ Cl ₂ , 25 °C)
Figure S23. ¹³ C NMR spectrum of complex 6 (75 MHz, CD ₂ Cl ₂ , 25 °C)
Figure S24. ¹ H NMR spectrum of complex 3 (300 MHz, CD ₂ Cl ₂ , 25 °C)
Figure S25. ¹ H NMR spectrum of complex 9 (300 MHz, CD ₂ Cl ₂ , 25 °C)
Figure S26. ¹ H NMR spectra of Borate, Al ⁱ Bu ₃ and (complex 3 after Borate and Al ⁱ Bu ₃ treatment) (300
MHz, <i>d</i> ₈ -THF, 25 °C)
Figure S27. ¹ H NMR spectra of Borate, Al'Bu ₃ and (complex 6 after Borate and Al'Bu ₃ treatment) (300
MHz, <i>d</i> ₈ -THF, 25 °C)
Figure S28. ¹ H NMR spectra of Borate, Al'Bu ₃ and (complex 9 after Borate and Al'Bu ₃ treatment) (300
MHz, <i>d</i> ₈ -THF, 25 °C)
Polymerization of Isoprene
¹ H NMR and ¹³ C NMR spectra of PIP
Figure S29. ¹ H NMR spectrum of polyisoprene for Entry 3 (Table 3, 300 MHz, CDCl ₃ , TMS, 25 °C, *
is water peak)
Figure S30. ¹ H NMR spectrum of polyisoprene for Entry 4 (Table 3, 300 MHz, CDCl ₃ , TMS, 25 °C, *
is water peak)
Figure S31. ¹ H NMR spectrum of polyisoprene for Entry 5 (Table 3, 300 MHz, CDCl ₃ , TMS, 25 °C)
Figure S32. ¹ H NMR spectrum of polyisoprene for Entry 8 (Table 3, 300 MHz, CDCl ₃ , TMS, 25 °C, *
is water peak)
Figure S33. ¹ H NMR spectrum of polyisoprene for Entry 9 (Table 3, 300 MHz, CDCl ₃ , TMS, 25 °C, *
is water peak)
Figure S34. ¹ H NMR spectrum of polyisoprene for Entry 12 (Table 3, 300 MHz, CDCl ₃ , TMS, 25
°C, * is water peak)
Figure S35. ¹ H NMR spectrum of polyisoprene for Entry 13 (Table 3, 300 MHz, CDCl ₃ , TMS, 25
°C, * is water peak)

Figure S36. ¹ H NMR spectrum of polyisoprene for Entry 14 (Table 3, 300 MHz, CDCl ₃ , TMS	, 25
°C, * is water peak)	23
Figure S37. ¹ H NMR spectrum of polyisoprene for Entry 15 (Table 3, 300 MHz, CDCl ₃ , TMS	, 25
°C)	24
Figure S38. ¹ H NMR spectrum of polyisoprene for Entry 16 (Table 3, 300 MHz, CDCl ₃ , TMS	, 25
°C, * is water peak)	24
Figure S39. ¹ H NMR spectrum of polyisoprene for Entry 17 (Table 3, 300 MHz, CDCl ₃ , TMS	, 25
°C, * is water peak)	25
Figure S40. ¹ H NMR spectrum of polyisoprene for Entry 18 (Table 3, 300 MHz, CDCl ₃ , TMS,	TMS,
25 °C, * is water peak)	25
Figure S41. ¹ H NMR spectrum of polyisoprene for Entry 19 (Table 3, 300 MHz, CDCl ₃ , TMS	, 25
°C, 1* is water peak, 2* is impurity of silicone grease)	26
Figure S42. ¹ H NMR spectrum of polyisoprene for Entry 20 (Table 3, 300 MHz, CDCl ₃ , TMS	, 25
°C, 1* is water peak, 2* is impurity(silicone grease)	26
Figure S43. ¹ H NMR spectrum of polyisoprene for Entry 21 (Table 3, 300 MHz, CDCl ₃ , TMS	, 25
°C, 1* is water peak, 2* is impurity(silicone grease)	27
Figure S44. ¹ H NMR spectrum of polyisoprene for Entry 22 (Table 3, 300 MHz, CDCl ₃ , TMS	, 25
°C, 1* is water peak, 2* is impurity of silicone grease)	27
Figure S45. ¹ H NMR spectrum of polyisoprene for Entry 23 (Table 3, 300 MHz, CDCl ₃ , TMS	, 25
°C, * is impurity of silicone grease)	28
Figure S46. ¹ H NMR spectrum of polyisoprene for Entry 24 (Table 3, 300 MHz, CDCl ₃ , TMS	, 25
°C)	28
Figure S47. ¹ H NMR spectrum of polyisoprene for Entry 25 (Table 3, 300 MHz, CDCl ₃ , TMS	, 25
°C, * is impurity(silicone grease)	29
Figure S48. ¹³ C NMR spectrum of polyisoprene for Entry 8 (Table 3) scan 8000 times (500	MHz,
CDCl ₃ , TMS, 25 °C, * indicates solvent peak). No 1,4-trans-polymer	29
Figure S49. ¹³ C NMR spectrum of polyisoprene for Entry 9 (Table 3) scan 10240 times (500	MHz,
CDCl ₃ , TMS, 25 °C, * indicates solvent peak). No 1,4-trans-polymer	30
Figure S50. ¹³ C NMR spectrum of polyisoprene for Entry 14 (Table 3) scan 10000 times (500	MHz,
CDCl ₃ , TMS, 25 °C, * indicates solvent peak). No 1,4-trans-polymer	30
Figure S51. ¹³ C NMR spectrum of polyisoprene for Entry 17 (Table 3) scan 10240 times (500	MHz,
CDCl ₃ , TMS, 25 °C, * indicates solvent peak). No 1,4-trans-polymer	31
Figure S52. ¹³ C NMR spectrum of polyisoprene for Entry 20 (Table 3) scan 10240 times (500	MHz,
CDCl ₃ , TMS, 25 °C, * indicates solvent peak). No 1,4-trans-polymer	31
Figure S53. ¹³ C NMR spectrum of polyisoprene for Entry 25 (Table 3) scan 10240 times (500	MHz,
CDCl ₃ , TMS, 25 °C, * indicates solvent peak). No 1,4-trans-polymer	32

	1	2	3	4	5
Formula	$C_{27}H_{47}YbN_2O_2Si_2$	C ₅₄ H ₉₄ Er ₂ N ₄ O ₂ Si ₄	$C_{54}H_{94}Y_2N_4O_2Si_4$	$C_{62}H_{110}N_4O_4Si_4Yb_2$	$C_{62}H_{110}N_4O_4Si_4Er_2$
FW	644.89	1278.21	1121.51	1433.98	1278.21
Space group	P-1	P-1	PI	P2(1)/n	P 1 21/n 1
Т(К)	293(2)	293(2)	293(2)	293(2)	293(2)
Crystal system	Triclinic	Triclinic	Triclinic	Monoclinic	monoclinic
a (Å)	10.4517(14)	10.4376(7)	10.408(3)	16.9930(8)	30.625(3)
b (Å)	11.3563(15)	11.4218(7)	11.353(4)	15.1128(7)	15.0990(16)
c (Å)	14.994(2)	15.0140(9)	14.924(5)	28.0534(14)	33.700(4)
a (deg)	78.823(2)	78.6510(10)	78.753(4)	90	90
β (deg)	76.843(2)	76.9410(10)	77.074(4)	97.2400(10)	115.6740(10)
γ(deg)	83.550(2)	83.5880(10)	83.801(4)	90	90
Z	2	1	1	4	8
V (Å ³)	1695.8(4)	1705.29(19)	1681.9(10)	7147.0(6)	1705.29(19)
Dc (Mgm ⁻³)	1.263	1.245	1.107	1.333	1.345
μ (mm ⁻¹)	2.846	2.549	1.823	2.711	2.486
F (000)	658	654	596	2952	5856
Reflns collected	14366	14945	14326	61467	28645
Unique reflns	7541	7740	7614	16417	22015
Parameters	304	304	304	863	1442
Goodness of fit	0.998	1.056	0.912	1.020	1.056
θ range (deg)	1.42 to 27.46	1.82 to 27.65	1.83 to 27.74	1.49 to 27.56	2.26 to 27.60
$R_1(I > 2\sigma(I))$	0.0525	0.0551	0.0722	0.0500	0.0392
wR ₂ ($I > 2\sigma(I)$)	0.1114	0.1311	0.1800	0.0695	0.0989
Largest	1.298	1.697	1.056	0.740	2.198
diff.peak and	-1.308	-0.933	-0.694	-1.095	-2.028
hole (e. Å-3)					

1. Table S1. Crystallographic Data for Complexes 1 – 12

	6	7	8	9	10	11	12
Formula	$C_{62}H_{110}N_4O_4Si_4Y_2$	$C_{62}H_{110}Gd_2N_4O_4Si_4$	C ₇₆ H ₁₁₅ Er ₃ N ₈ O ₅ Si	C ₇₆ H ₁₁₅ N ₈ O ₅ SiY ₃	$C_{76}H_{115}Dy_3N_8O_5Si$	$C_{80}H_{110}N_8OEr_2$	$C_{80}H_{110}N_8OY_2$
FW	1265.72	1402.40	1750.63	1515.58	1736.35	1534.28	1377.58
Space group	P 1 21/c 1	P21/c	P2(1)/c	P 21/c	P2(1)/c	P-1	P-1
T(K)	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)
Crystal	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic	Triclinic
system							
a (Å)	16.873(3)	17.006(3)	15.8978(10)	15.8890(16)	15.9167(11)	12.0912(4)	12.0907(5)
b (Å)	15.102(2)	15.194(3)	23.9240(15)	23.917(3)	23.9395(17)	14.9505(6)	14.9826(7)
c (Å)	30.748(5)	31.049(5)	24.6951(15)	24.683(3)	24.7080(17)	24.4254(10)	24.4211(11)
α (deg)	90	90	90	90	90	104.891(2)	104.563(2)
β (deg)	115.655(11)	115.666(8)	95.6670(10)	95.663(2)	95.6220(10)	98.886(2)	98.834(2)
γ(deg)	90	90	90	90	90	93.187(2)	93.354(2)
Z	4	4	4	4	4	2	2
V (Å ³)	7063(2)	7231(2)	9346.6(10)	9333.9(17)	9369.4(11)	4194.8(3)	4209.1(3)
Dc (Mgm ⁻³)	1.187	1.288	1.244	1.079	1.231	1.215	1.087
μ (mm ⁻¹)	1.747	1.927	2.725	1.906	2.424	2.030	1.415
F (000)	2680	2904	3540	3192	3516	1580	1464
Reflns	52781	80089	66372	80005	66454	82369	60301
collected							
Unique	13377	16101	16457	21379	16486	19292	14346
reflns							
Parameters	805	870	853	841	853	879	879
Goodness of	1.032	1.147	0.970	1.009	0.964	1.050	0.997
fit							
θ range	1.50 to 25.00	1.33 to 27.37	1.54 to 25.00	1.54 to 27.52	1.54 to 25.00	2.88 to 27.57	2.96 to 25.00
(deg)							
$R_1 (I > 2\sigma($	0.0830	0.0467	0.0379	0.0367	0.0367	0.0838	0.0876
<i>I</i>))							
wR ₂ ($I > 2\sigma$ (0.1881	0.1161	0.0853	0.0897	0.0837	0.1465	0.2099
I))							
Largest	1.261	0.956	0.867	0.45	0.935	2.373	0.613
diff.peak	-0.984	-0.946	-0.746	-0.24	-0.653	-2.620	-0.745
and hole							
(e. Å-3)							

Molecular structure of the complexes

Figure S1. Molecular structure of complex **1**. Thermal ellipsoids are set at 30% probability. Hydrogen atoms are omitted for clarity.

Figure S2. Molecular structure of complex **2**. Thermal ellipsoids are set at 30% probability. Hydrogen atoms are omitted for clarity.

Figure S3. Molecular structure of complex **3**. Thermal ellipsoids are set at 30% probability. Hydrogen atoms are omitted for clarity.

Figure S4. Molecular structure of complex **4**. Thermal ellipsoids are set at 30% probability. Hydrogen atoms are omitted for clarity.

Figure S5. Molecular structure of complex **5**. Thermal ellipsoids are set at 30% probability. Hydrogen atoms are omitted for clarity.

Figure S6. Molecular structure of complex **6**. Thermal ellipsoids are set at 30% probability. Hydrogen atoms are omitted for clarity.

Figure S7. Molecular structure of complex **7**. Thermal ellipsoids are set at at 30% probability. Hydrogen atoms are omitted for clarity.

Figure S8. Molecular structure of complex **8**. Thermal ellipsoids are set at 30% probability. Hydrogen atoms and the tertiary butyl groups on N2, N4, N6, N8 atoms are omitted for clarity.

Figure S9. Molecular structure of complex **9**. Thermal ellipsoids are set at 30% probability. Hydrogen atoms and the tertiary butyl groups on N2, N4, N6, N8 atoms are omitted for clarity.

Figure S10. Molecular structure of complex **10**. Thermal ellipsoids are set at 30% probability. Hydrogen atoms and the tertiary butyl groups on N2, N4, N6, N8 atoms are omitted for clarity.

Figure S11. Molecular structure of complex **11**. Thermal ellipsoids are set at 30% probability. Hydrogen atoms are omitted for clarity.

Figure S12. Molecular structure of complex **12**. Thermal ellipsoids are set at 30% probability. Hydrogen atoms are omitted for clarity.

¹H NMR and ¹³C NMR spectra of complex 3, 6 and 9

Figure S13. ¹H NMR spectrum of complex 3 (300 MHz, C₆D₆, 25 °C, * indicates impurities)

Figure S14. ¹³C NMR spectrum of complex 3 (75 MHz, C_6D_6 , 25 °C)

Figure S16. ¹³C NMR spectrum of complex 6 (75 MHz, C₆D₆, 25 °C)

Figure S17. The reaction of complex 3 with THF at the NMR scale (300 MHz, 25 °C)

Figure S18. ¹H NMR spectrum of complex **9** (300 MHz, C₇D₈, TMS, 25 °C, * indicates solvent residual peak)

Figure S19. ¹³C NMR spectrum of complex 9 (75 MHz, C_7D_8 , TMS, 25 °C)

Figure S20. ¹H NMR spectrum of complex **12** (300 MHz, C₇D₈, 25 °C, * indicates solvent residual peak)

Figure S22. ¹H NMR spectrum of complex 6 (300 MHz, CD₂Cl₂, 25 °C)

Figure S25. ¹H NMR spectrum of complex 9 (300 MHz, CD₂Cl₂, 25 °C)

Figure S26. ¹H NMR spectra of Borate, Al^iBu_3 and (complex **3** after Borate and Al^iBu_3 treatment) (300 MHz, d_8 -THF, 25 °C)

Figure S27. ¹H NMR spectra of Borate, Al^{*i*}Bu₃ and (complex 6 after Borate and Al^{*i*}Bu₃ treatment) (300 MHz, d_8 -THF, 25 °C)

Figure S28. ¹H NMR spectra of Borate, Al^{*i*}Bu₃ and (complex 9 after Borate and Al^{*i*}Bu₃ treatment) (300 MHz, d_8 -THF, 25 °C)

Polymerization of Isoprene

¹H NMR and ¹³C NMR spectra of PIP

Figure S29. ¹H NMR spectrum of polyisoprene for Entry 3 (Table 3, 300 MHz, CDCl₃, TMS, 25 °C, * is water peak)

Figure S30. ¹H NMR spectrum of polyisoprene for Entry 4 (Table 3, 300 MHz, CDCl₃, TMS,

Figure S31. ¹H NMR spectrum of polyisoprene for Entry 5 (Table 3, 300 MHz, CDCl₃, TMS, 25 °C)

Figure S32. ¹H NMR spectrum of polyisoprene for Entry 8 (Table 3, 300 MHz, CDCl₃, TMS,

Figure S33. ¹H NMR spectrum of polyisoprene for Entry 9 (Table 3, 300 MHz, CDCl₃, TMS, 25 °C, * is water peak)

Figure S34. ¹H NMR spectrum of polyisoprene for Entry 12 (Table 3, 300 MHz, CDCl₃, TMS,

Figure S35. ¹H NMR spectrum of polyisoprene for Entry 13 (Table 3, 300 MHz, CDCl₃, TMS, 25 °C, * is water peak)

Figure S36. ¹H NMR spectrum of polyisoprene for Entry 14 (Table 3, 300 MHz, CDCl₃, TMS, 25 °C, * is water peak)

Figure S37. ¹H NMR spectrum of polyisoprene for Entry 15 (Table 3, 300 MHz, CDCl₃, TMS, 25 °C)

Figure S38. ¹H NMR spectrum of polyisoprene for Entry 16 (Table 3, 300 MHz, CDCl₃, TMS, 25 °C, * is water peak)

Figure S39. ¹H NMR spectrum of polyisoprene for Entry 17 (Table 3, 300 MHz, CDCl₃, TMS, 25 °C, * is water peak)

Figure S40. ¹H NMR spectrum of polyisoprene for Entry 18 (Table 3, 300 MHz, CDCl₃, TMS, TMS, 25 °C, * is water peak)

Figure S41. ¹H NMR spectrum of polyisoprene for Entry 19 (Table 3, 300 MHz, CDCl₃, TMS, 25 °C, 1* is water peak, 2* is impurity of silicone grease)

Figure S42. ¹H NMR spectrum of polyisoprene for Entry 20 (Table 3, 300 MHz, CDCl₃, TMS, 25 °C, 1* is water peak, 2* is impurity(silicone grease)

Figure S43. ¹H NMR spectrum of polyisoprene for Entry 21 (Table 3, 300 MHz, CDCl₃, TMS, 25 °C, 1* is water peak, 2* is impurity(silicone grease)

Figure S44. ¹H NMR spectrum of polyisoprene for Entry 22 (Table 3, 300 MHz, CDCl₃, TMS, 25 °C, 1* is water peak, 2* is impurity of silicone grease)

Figure S45. ¹H NMR spectrum of polyisoprene for Entry 23 (Table 3, 300 MHz, CDCl₃, TMS, 25 °C, * is impurity of silicone grease)

Figure S46. ¹H NMR spectrum of polyisoprene for Entry 24 (Table 3, 300 MHz, CDCl₃, TMS, 25 °C)

Figure S47. ¹H NMR spectrum of polyisoprene for Entry 25 (Table 3, 300 MHz, CDCl₃, TMS, 25 °C, * is impurity(silicone grease)

Figure S48. ¹³C NMR spectrum of polyisoprene for Entry 8 (Table 3) scan 8000 times (500 MHz, CDCl₃, TMS, 25 °C, * indicates solvent peak). No 1,4-trans-polymer

Figure S49. ¹³C NMR spectrum of polyisoprene for Entry 9 (Table 3) scan 10240 times (500 MHz, CDCl₃, TMS, 25 °C, * indicates solvent peak). No 1,4-trans-polymer

Figure S50. ¹³C NMR spectrum of polyisoprene for Entry 14 (Table 3) scan 10000 times (500 MHz, CDCl₃, TMS, 25 °C, * indicates solvent peak). No 1,4-trans-polymer

Figure S51.¹³C NMR spectrum of polyisoprene for Entry 17 (Table 3) scan 10240 times (500 MHz, CDCl₃, TMS, 25 °C, * indicates solvent peak). No 1,4-trans-polymer

Figure S52. ¹³C NMR spectrum of polyisoprene for Entry 20 (Table 3) scan 10240 times (500 MHz, CDCl₃, TMS, 25 °C, * indicates solvent peak). No 1,4-trans-polymer

Figure S53. ¹³C NMR spectrum of polyisoprene for Entry 25 (Table 3) scan 10240 times (500 MHz, CDCl₃, TMS, 25 °C, * indicates solvent peak). No 1,4-trans-polymer