Supporting Information

Oxygenation of a Benzyl Ligand in SNS-Palladium Complexes with O₂:

Acceleration by Anions or Brønsted Acids

Reina Shimokawa, Yumi Kawada, Miki Hayashi, Yasutaka Kataoka, and Yasuyuki Ura*

Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan

ura@cc.nara-wu.ac.jp

Experimental details	S2
Crystal data and structure refinement parameters for 1, 2, 3a, and 5	S 8
Molecular structures of 1 and 5	S9
NMR spectra of 3b , 3c , and 4b	S11

Experimental Section

Materials and Methods. All manipulations were performed under an argon atmosphere using standard Schlenk techniques. Dry solvents were purchased from either Wako Chemical or Nacalai. Flash column chromatography was performed using silica gel SILICYCLE SiliaFlash F60 (40-63 µm, 230-400 mesh). The SNS ligands (pysmepy¹ and phsmepy²) and [PdBnCl(cod)]³ were prepared as reported previously.

Physical and Analytical Measurements. NMR spectra were recorded on either a Bruker AV-300N (300 MHz (¹H), 75 MHz (¹³C)) or a JEOL JNM-AL400 (400 MHz (¹H), 100 MHz (¹³C)) spectrometer. Chemical shift values (δ) were expressed relative to SiMe₄. Elemental analysis was obtained using a J-SCIENCE LAB JM-10 analyzer. High-resolution mass spectra were recorded on a JEOL JMS-T100LC spectrometer (ESI-TOF MS) with positive ionization mode.

Synthesis of [PdBn(pysmepy)][OTf] (1). [PdBnCl(cod)] (0.202 g, 0.59 mmol), pysmepy (0.192 g, 0.59 mmol, 1.00 equiv.), and AgOTf (0.156 g, 0.61 mmol, 1.03 equiv.) were dissolved in dry CH_2Cl_2 (10 mL) and the reaction mixture was stirred at room temperature for 11 h under argon. After filtration, hexane was added to the filtrate to precipitate yellow solids. The supernatant solution was removed and the obtained solids were dried under vacuum to give 1 (0.391 g, 0.58 mmol, 98% yield).

¹H NMR (300 MHz, CD₃CN) δ 8.38 (d, J = 4.5 Hz, 2H, H_g), 7.93 (t, J = 7.8Hz, 1H, H_a), 7.70 (dt, J = 7.8, 1.5 Hz, 2H, H_e), 7.55 (d, J = 7.8 Hz, 2H, H_b), 7.35–7.31 (m, 4H, H_d, H_f), 7.23–7.09 (m, 5H, Ph), 5.05 (s, 4H, H_c), 3.32 (s, 2H, H_h). ¹³C NMR (75 MHz, CD₃CN) δ 158.2 (C³), 151.7 (C⁹), 151.6 (C⁵), 147.2 (Ph), 140.5 (C¹), 139.3 (C⁷), 130.3 (Ph), 129.8 (Ph), 126.7 (C⁸ or C⁶), 125.7 (Ph), 125.2 (C⁶ or C⁸), 122.9 (C²), 47.5 (C⁴), 22.4 (C¹⁰). Anal. Calcd for C₂₅H₂₂F₃N₃O₃PdS₃·0.5CH₂Cl₂: C, 42.86; H, 3.24; N, 5.88. Found: C, 43.05; H, 3.38; N, 5.82.

General Procedure for the Reaction of Complex 1 with O_2 . All the reactions were performed in sealed J. young NMR tubes (528-LPV-8). Either dichloromethane, 1,1,2,2-tetrachloroethane, or hexamethyldisiloxane was used as an internal standard for each reaction. Complex 1 (10.0 mg, 15 μ mol)

was dissolved in CD₃CN (0.5 mL) under argon, and O₂ (10 mL) was passed through the solution via syringe in 1 min. Additives (either *n*-Bu₄NX in CH₃CN (0.50 M), HCl in dioxane/CH₃CN (1:7 v/v, 0.50 M), HBr in MeOH (0.40 M), AcOH in CH₃CN (0.50 M), CF₃CO₂H in CH₃CN (0.50 M), or TfOH in CH₃CN (0.50 M), 18 µmol, 1.2 equiv) were then added to the solution, and the reaction mixture was heated up to 40 °C. The reactions were monitored by ¹H NMR. Yields of the oxygenated compounds (PhCHO, BnOOH, and BnOH) were determined based on the integrations of corresponding aldehyde or methylene proton signals (δ 10.0, 4.90, and 4.57, respectively). The formation of complex **4a** was also confirmed based on ¹H NMR analysis by comparing the NMR data for the reaction mixture with those for **4a** reported previously.¹

Isolation of Dinuclear Palladium Complex 2. Complex **1** (31.2 mg, 41 μ mol) was dissolved in dry CH₃CN, and the solution was heated at 60 °C for 8 days under O₂. Et₂O was diffused slowly to the reaction mixture, and the resulted yellow needle-like crystals were collected and dried under vacuum to give **2** (16.5 mg, 14 μ mol, 69% yield).

¹H NMR (300 MHz, CD₃CN) δ 9.21 (dd, J = 0.9, 5.7 Hz, 2H, py"), 7.98 (dd, J = 0.9, 8.1 Hz, 2H, py), 7.87–7.70 (m, 8H, py, py', py"), 7.56 (d, J = 5.7 Hz, 2H, py'), 7.48 (s, 2H, CH), 7.46–7.38 (m, 4H, py"), 7.14–7.06 (m, 4H, py, py'), 6.82 (d, J = 14.1 Hz, 2H, CHH), 4.30 (d, J = 14.1 Hz, 2H, CHH). ¹³C NMR (75 MHz, CD₃CN) δ 174.2 (py'-quaternary), 166.0 (py-quaternary), 158.9 (py"-quaternary), 156.7 (py-quaternary), 152.4 (py"), 151.2 (py'), 142.6 (py), 140.4 (py'), 140.2 (py"), 129.1 (py"), 124.9 (py"), 123.1 (py), 122.5 (py), 122.3 (py'), 121.9 (py'), 44.4 (CH), 38.4 (CH₂). Anal. Calcd for C₃₆H₂₈F₆N₆O₆Pd₂S₆: C, 37.28; H, 2.43; N, 7.25. Found: C, 37.29; H, 2.51; N, 7.03.

Isolation of Dinuclear Palladium Complexes 3a–c. The following procedure for complex **3a** is representative. In a J. young NMR tube, complex **1** (10.1 mg, 15 μ mol) was dissolved in CD₃CN (0.5 mL) under argon. Hexamethyldisiloxane (1.0 μ L) was added as an internal standard, and O₂ (10 mL) was passed through the solution via syringe in 1 min. A CD₃CN solution (0.50 M) of *n*-Bu₄NCl (36 μ L, 18 μ mol, 1.2 equiv.) was then added to the solution, and the reaction mixture was heated up to 40 °C. Orange block crystals were observed after 6 h and were collected, washed with CH₃CN and dried under vacuum (4.5 mg, 4.8 μ mol, 64% yield).

Complex **3a** (X = Cl): ¹H NMR (300 MHz, CDCl₃) δ 9.21 (ddd, *J* = 0.6, 1.5, 6.0 Hz, 2H, py'-6), 8.41 (ddd, *J* = 0.9, 1.8, 4.8 Hz, 2H, py"-6), 7.87 (s, 2H, *CH*), 7.69–7.58 (m, 6H, py-3 or py-5, py'-3 and py'-4), 7.50 (dt, *J* = 1.8, 7.5 Hz, 2H, py"-4), 7.29 (t, *J* = 7.8 Hz, 2H, py-4), 7.23 (td, *J* = 0.6, 8.1 Hz, 2H, py"-3), 7.13–7.07 (m, 4H, py-3 or py-5, and py'-5), 7.00 (ddd, *J* = 0.9, 5.1, 7.5 Hz, 2H, py"-5), 5.62 (d, *J* = 16.2 Hz, 2H, *CH*H), 5.45 (d, *J* = 16.2 Hz, 2H, *CHH*). ¹³C NMR (75 MHz, CDCl₃) δ 170.5 (py'-2), 160.4 (py-2), 159.9 (py"-2), 157.7 (py-6), 153.3 (py'-6), 149.5 (py"-6), 138.6 (py'-3), 137.9, 136.5 (py"-4), 121.9 (py"-3), 120.9, 120.7, 120.5, 120.1, 119.7, 46.2 (*C*H), 36.8 (*C*H₂). Anal. Calcd for C₃₄H₂₈Cl₂N₆Pd₂S₄·H₂O: C; 42.96; H, 3.18; N, 8.84. Found: C, 42.93; H, 3.16; N, 8.84.

Complex **3b** (X = Br): Orange solid (4.9 mg, 4.7 µmol, 63% yield). ¹H NMR (300 MHz, CDCl₃) δ 9.41(d, J = 5.4 Hz, 2H, py'-6), 8.42 (d, J = 4.2 Hz, 2H, py"-6), 7.88 (s, 2H, CH), 7.68–7.59 (m, 6H, py-3 or py-5, py'-3 and py'-4), 7.50 (dt, J = 1.8, 7.8 Hz, 2H, py"-4), 7.30 (t, J = 8.1 Hz, 2H, py-4), 7.23 (d, J = 8.1 Hz, 2H, py"-3), 7.12–6.99 (m, 6H, py-3 or py-5, py'-5 and py"-5), 5.61 (d, J = 16.5 Hz, 2H, CHH), 5.44 (d, J = 16.5 Hz, 2H, CHH). ¹³C NMR (75 MHz, CDCl₃) δ 169.9 (py'-2), 163.8 (py-2), 159.8 (py"-2), 157.5 (py-6), 154.7 (py'-6), 149.4 (py"-6), 138.6 (py'-3), 137.7, 136.4 (py"-4), 121.7 (py"-3), 120.9, 120.7, 120.4, 119.9, 119.2, 47.2 (CH), 37.0 (CH₂). HRMS (ESI): *m*/*z* calcd for C₃₄H₂₈BrN₆Pd₂S₄ [M-Br]+ 940.8516, found 940.8506.

Complex **3c** (X = I): Orange solid (4.8 mg, 4.2 µmol, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.70 (d, J = 6.0 Hz, 2H, py'-6), 8.43 (d, J = 4.4 Hz, 2H, py"-6), 7.86 (s, 2H, *CH*), 7.64–7.61 (m, 4H, py'-3 and py'-4), 7.53 (d, J = 8.0 Hz, 2H, py-3 or py-5), 7.50 (t, J = 7.6 Hz, 2H, py"-4), 7.32 (t, J = 7.8 Hz, 2H, py-4), 7.24 (d, J = 8.0 Hz, 2H, py"-3), 7.11–7.00 (m, 6H, py-3 or py-5, py'-5 and py"-5), 5.58 (d, J = 16.2 Hz, 2H, *CH*H), 5.38 (d, J = 16.2 Hz, 2H, *CHH*). ¹³C NMR (100 MHz, CDCl₃) δ 169.3 (Py'-2), 163.3 (Py-2), 159.9 (Py"-2), 157.7 (Py-6), 157.4 (Py'-6), 149.4 (Py"-6), 138.6 (Py'-3), 137.6, 136.4 (Py"-4), 121.8 (Py"-3), 121.1, 121.0, 120.0, 120.0, 118.8, 49.0 (*C*H), 37.6 (*C*H₂). HRMS (ESI): *m/z* calcd for C₃₄H₂₈IN₆Pd₂S₄ [M-I]⁺ 988.8386, found 988.8359.

Isolation of Complex 4b. In a J. Young NMR tube, complex 1 (10.2 mg, 15 μ mol) was dissolved in CD₃CN (0.5 mL) under argon. 1,1,2,2-Tetrachloroethane (2.0 μ L) was added as an internal standard, and O₂ (10 mL) was passed through the solution via syringe in 1 min. A CH₃OH solution of HBr (0.40

M, 45 μ L, 18 μ mol, 1.2 equiv.) was then added to the solution, and the reaction mixture was heated up to 40 °C for 6 h. At room temperature, Et₂O was added to the reaction mixture. The supernatant solution was removed and the obtained solids were dried under vacuum to give **4b** (6.3 mg, 9.5 μ mol, 63% yield). The ratio of **4b**-SNS:**4b**-NNN in CD₃CN at room temperature was ca. 17:1, determined by ¹H NMR.

¹H NMR for **4b**-SNS (300 MHz, CD₃CN) δ 8.46 (d, J = 4.2 Hz, 2H, H_g), 8.09 (t, J = 8.0 Hz, 1H, H_a), 7.90 (br s, 4H, H_d and H_e), 7.70 (d, J = 8.1 Hz, 2H, H_b), 7.45 (br t, J = 5.0 Hz, 2H, H_f), 5.25 (br s, 4H, H_c). ¹H NMR for **4b**-NNN (300 MHz, CD₃CN, selected data) δ 9.23 (dd, J = 6.2, 1.1 Hz, 2H, H_g), 7.58 (d, J = 7.8 Hz, 2H, H_b), 7.28 (ddd, J = 7.4, 6.0, 1.4 Hz, 2H, H_f), 6.74 (d, J = 14.7 Hz, 2H, H_c), 4.64 (d, J= 14.7 Hz, 2H, H_c). ¹³C NMR for **4b**-SNS (75 MHz, CD₃CN) δ 163.7 (C³), 151.8 (C⁹), 149.0 (C⁵), 141.7 (C¹), 139.7 (C⁷), 127.4 (C⁶), 126.0 (C⁸), 123.2 (C²), 47.2 (C⁴). HRMS (ESI): m/z calcd for C₁₇H₁₅BrN₃PdS₂ [M]⁺ 511.8919, found 511.8921.

Synthesis of [PdBn(phsmepy)][OTf] (5). [PdBnCl(cod)] (29.8 mg, 87 μ mol), phsmepy (28.5 mg, 88 μ mol, 1.01 equiv.), and AgOTf (22.9 mg, 89 μ mol, 1.02 equiv.) were dissolved in dry CH₂Cl₂ (3 mL) under argon and the reaction mixture was stirred at room temperature for 3 h. After filtration, hexane was added to the filtrate to precipitate yellow block crystals. The supernatant solution was removed and the obtained crystals were dried under vacuum to give 5 (58.5 mg, 87 μ mol, >99% yield).

¹H NMR (300 MHz, CDCl₃) δ 7.82 (t, J = 7.8 Hz, 1H, py-4), 7.62–7.53 (m, 6H, Ph, py-3,5), 7.46–7.34 (m, 6H, Ph), 6.87 (s, 5H, Ph), 4.97 (br s, 4H, CH₂S), 3.11 (s, 2H, CH₂Ph). ¹³C NMR (75 MHz, CDCl₃) δ 156.3 (Py-2,6), 145.7 (Ph), 140.2 (Py-4), 132.8 (Ph), 131.2 (Ph), 130.5 (Ph), 130.0 (Ph), 128.9 (Ph), 128.4 (Ph), 124.8 (Ph), 123.1 (Py-3,5), 52.5 (CH₂S), 22.7 (CH₂Ph). Anal. Calcd for C₂₇H₂₄F₃NO₃PdS₃: C; 48.39; H, 3.61; N, 2.09. Found: C, 48.01; H, 3.61; N, 2.08.

Reaction of Complex 5 with O_2. The procedure was same as that for complex 1. The results were summarized in Table S1.

Table S1. Reaction of 5 with O_{2^a}

^a Reaction conditions: 5 (15 µmol), additive (18 µmol), and CD₃CN (0.5 mL). ^b NMR yield. ^c 70 °C, 72 h.

Isolation of Benzyl Hydroperoxide. Complex 1 (88 mg, 0.13 mmol) was placed in a 20 mL two-neck flask under argon, and oxygen was then purged. CH₃CN (5 mL) was added to give a yellow solution. HCl in Et₂O (1 M, 130 μ L, 0.13 mmol) was added to the solution, and the reaction mixture was stirred at room temperature for 5 h. Et₂O (15 mL) was added to the solution to precipitate the formed complex **4** (orange yellow solid). The colorless supernatant was transferred to 50 mL flask and the solvent was removed under vacuum. The obtained yellow oil was purified by silica gel column chromatography (eluent: CH₂Cl₂/hexane = 7 : 2 to 5 : 1) to give benzyl hydroperoxide (11.2 mg, 0.09 mmol, 69% yield) after removal of the solvents. The spectral data were consistent with those reported previously.⁴

Conversion of Benzyl Hydroperoxide into Benzaldehyde and Benzyl Alcohol. In a J. young NMR tube, benzyl hydroperoxide in CD₃CN (30 mM, 0.50 mL, 15 μ mol) and 1,1,2,2-tetrachloroethane (2.0 μ L, 19 μ mol) as an internal standard were placed under argon (for the reaction under O₂, O₂ gas was passed through the solution for 10 min at a rate of 10 mL/min). An additive in solution (0.50 M, 30 μ L, 15 μ mol, either *n*-Bu₄NCl in CH₃CN or HCl in dioxane/CH₃CN) was added and the reaction mixture was heated at 40 °C for 2 h. The conversion of benzyl hydroperoxide and yields of benzaldehyde and benzyl alcohol were determined by ¹H NMR analysis.

Crystallographic Study of Complexes 1, 2, 3a, and 5. Crystals suitable for X-ray diffraction measurements were obtained by recrystallization from CH_2Cl_2 /hexane for 1 (yellow block crystals), CH_3CN/Et_2O for 2 (yellow needle crystals), CD_3CN only for 3a (orange block crystals), and CH_3CN/Et_2O for 5 (yellow block crystals), respectively. The crystals were mounted using a cryoloop.

The diffraction data were collected with a Rigaku Mercury detector or a Rigaku Saturn CCD detector ($Mo_{K\alpha}$, $\lambda = 0.71073$ Å). Crystal data and experimental data are listed in Table S2. The structures were solved by direct methods using SHELXS-97 and refined by least squares on F^2 , SHELXL-97.^{5, 6} Non-hydrogen atoms were anisotropically refined. Refinements were continued until all shifts were smaller than one-tenth of the standard deviations of the parameters involved. Atomic scattering factors and anomalous dispersion terms were taken from the International Tables for X-ray Crystallography.⁷ CCDC reference numbers: 1491453 (1), 1491480 (2), 1491481 (3a), and 1491479 (5).

	1	2	3a	5
formula	$C_{26}H_{24}Cl_2F_3N_3O_3PdS_3$	$C_{40}H_{34}F_6N_8O_6Pd_2S_6$	$C_{36}H_{31}Cl_2N_7Pd_2S_4$	$C_{27}H_{24}F_3NO_3PdS_3$
fw	756.96	1241.91	973.62	670.05
cryst size, mm	$0.20\times0.20\times0.20$	$0.20\times 0.05\times 0.03$	$0.12 \times 0.10 \times 0.08$	$0.10 \times 0.10 \times 0.10$
cryst syst	monoclinic	triclinic	triclinic	monoclinic
space group	$P2_{1}/c$	<i>P</i> -1	<i>P</i> -1	$P2_{1}/n$
<i>a</i> , Å	9.995(3)	11.8556(15)	11.028(2)	10.224(2)
b, Å	26.900(7)	12.2946(14)	11.8922(19)	13.422(3)
<i>c</i> , Å	11.989(3)	16.8688(19)	14.942(3)	20.061(4)
α , deg	90	74.287(4)	73.820(4)	90
β , deg	113.816(3)	85.564(5)	89.554(5)	102.936(4)
γ, deg	90	81.418(4)	88.613(6)	90
V, Å ³	2949.1(13)	2338.6(5)	1881.4(6)	2682.9(9)
Ζ	4	2	2	4
D (calcd), g cm ⁻³	1.705	1.764	1.719	1.659
data collection temp, K	293(2)	153(2)	153(2)	153(2)
μ (Mo K α), mm ⁻¹	1.077	1.116	1.358	0.977
$2\theta_{\rm max}$, deg	55.0	55.0	55.0	55.0
no. of measd reflns	22131	28245	30679	31792
no. of unique reflns	6753	10659	8611	6140
no. of obsd reflns $(I > 2\sigma(I))$	6019	9426	7396	5409
no. of variables	371	615	461	343
$R_1^a (I > 2\sigma(I))$	0.0532	0.0367	0.0475	0.0474
$wR_2^a (I > 2\sigma(I))$	0.1297	0.0898	0.1245	0.1232
R_1^a (all data)	0.0591	0.0416	0.0558	0.0533
wR_2^a (all data)	0.1356	0.0942	0.1325	0.1292
GOF	1.050	1.058	1.058	1.036

Table S2. Summary of Crystal Data, Collection Data, and Refinement of 1, 2, 3a, and 5

^a $R_1 = \Sigma ||F_0| - |F_c|| \Sigma |F_0|; wR_2 = [\Sigma w(|F_0| - |F_c|)^2 \Sigma w F_0^2]^{1/2}.$

Figure S1. Molecular Structure of **1**. Thermal ellipsoids are shown at the 50% probability level. A counter anion, a solvent molecule (CH_2Cl_2), and hydrogen atoms are omitted for clarity.

Figure S2. Molecular Structure of **5**. Thermal ellipsoids are shown at the 50% probability level. A counter anion and hydrogen atoms are omitted for clarity.

¹³C NMR (75 MHz, CD₃CN)

References

- 1 Y. Kawada, Y. Kataoka and Y. Ura, Dalton Trans., 2013, 42, 14844-14855.
- 2 L. Canovese, F. Visentin, G. Chessa, G. Gardenal and P. Uguagliati, *J. Organomet. Chem.*, 2001, **622**, 155-165.
- 3 R. A. Stockland Jr, G. K. Anderson, N. P. Rath, J. Braddock-Wilking and J. C. Ellegood, *Can. J. Chem.*, 1996, **74**, 1990-1997.
- 4 S. Kyasa, B. W. Puffer and P. H. Dussault, J. Org. Chem., 2013, 78, 3452-3456.
- 5 G. M. Sheldrick, In SHELXTL-PC Package, Bruker AXS, Inc., Madison, WI, 1998.
- 6 G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122.
- 7 J. A. Ibers and W. C. Hamilton, eds., *International Tables for X-ray Crystallography*, Kynoch Press, Birmingham, UK, 1974.