ESI

Niobium tetrachloride complexes with thio-, seleno- and telluro-ether coordination – synthesis and structures

Yao-Pang Chang, William Levason, Mark E. Light and Gillian Reid

As noted in the main text, trace hydrolysis/air oxidation in the Nb(IV) systems can lead to Nb(V) products. Crystals of two examples containing NbOCl₃ were isolated in this work and their structures determined.

[NbOCl₃(Me₂S)]

The green crystals were formed during recrystallisation of brown $[NbCl_4(Me_2S)_2]$ from CH_2Cl_2 by layered with n-hexane. The structure contains two slightly different molecules in the unit cell, both square pyramidal with an apical oxo-group which are linked into chains by asymmetric oxido-bridges, Nb1–O1 = 1.744(3), Nb1–O1ⁱⁱ = 2.224(3). (Figure S1). As observed for the Nb(IV) complexes, there is little difference in Nb–Cl_{transS} and Nb–Cl_{transCl}.

(a)

Figure S1 (a) The structure of [NbOCl₃(Me₂S)]] showing the atom numbering scheme and with ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Nb1–O1 = 1.744(3), Nb1–O1ⁱⁱ = 2.224(3), Nb1–Cl1 = 2.336(1), Nb1–Cl2 = 2.310(1), Nb1–Cl3 = 2.360(2), Nb1–S1 = 2.692(2), Nb2–O2 = 1.746(3), Nb2–O2ⁱⁱ = 2.232(3), Nb2–Cl4 = 2.332(2), Nb2–Cl5 = 2.336(1), Nb2–Cl6 = 2.344(2), Nb2–S2 = 2.684(1); O1–Nb1–O1ⁱⁱ = 172.5(2), O1–Nb1–Cl1 = 97.6(1), O1–Nb1–Cl2 = 100.3(1), O1–Nb1–Cl3 = 96.3(1), O1–Nb1–S1 = 93.9(1), Nb1–O1–Nb1ⁱ = 171.9(2), O2–Nb2–O2ⁱⁱ = 173.16(7), O2–Nb2–Cl4 = 97.5(1), O2–Nb2–Cl5 = 99.7(1), O2–Nb2–Cl6 = 97.0(1), O2–Nb2–S2 = 93.3(1), Nb2–O2–Nb2ⁱ = 168.9(2). Symmetry operation: i = x, –y+1/2, z+1/2, ii = x, –y+1/2, z-1/2, (b) the polymeric chain.

The Nb–Cl and Nb–S distances seem unexceptional, and the disparate Nb–O are similar to those found in solid NbOCl₃,^{S1} which is dimeric with each niobium in an edge-linked distorted octahedron of four chlorines and two *trans* oxides (Nb–O = 2.203(3), 1.758(3) Å), which weakly link the dimers into polymer chains.

[NbOCl₃{MeS(CH₂)₂SMe}] This was obtained as the bulk product from one reaction, no doubt due to adventitious oxidation/hydrolysis.

NbCl₄ (73 mg, 0.3 mmol) was suspended in CH₂Cl₂ (15 mL) at room temperature. A solution of MeS(CH₂)₂SMe (36.6 mg, 0.3 mmol) and CH₂Cl₂ (2 mL) was added and the mixture stirred overnight. After filtering the pale green solution was evaporated *in vacuo*, leaving a pale green powder. Yield: 39 mg, 36%. Required for C₄H₁₀Cl₃NbOS₂ (337.52): C, 14.23; H, 2.99. Found: C, 13.55; H 2.94. IR (Nujol, cm⁻¹): 939 (Nb=O), 325, 344, 363 (Nb-Cl). ¹H NMR (CDCl₃, 295 K): δ = 2.19 (br, [3H], CH₃), 2.48 (br, [3H], CH₃), 2.76 (br, [2H], CH₂), 3.16 (br, [2H], CH₂).

Pale green crystals were grown by allowing a CH_2Cl_2 solution of the complex to evaporate under a N_2 atmosphere.

Figure S2. The structure of [NbOCl₃{MeS(CH₂)₂SMe}] showing the atom numbering scheme and with ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Cl1–Nb1 = 2.375(1), Cl2–Nb1 = 2.339(1), Cl3–Nb1 = 2.369(1), O1–Nb1 = 1.718(4), S1–Nb1 = 2.664(1), S2–Nb1 = 2.856(1); Cl1–Nb1–Cl3 = 158.15(5), Cl2–Nb1–O1 = 105.17(15), S1–Nb1–S2 = 77.50(4), O(1)–Nb(1)–Cl(3) = 97.22(14), Cl(2)–Nb(1)–Cl(3) = 97.03(5), O(1)–Nb(1)–Cl(1) = 98.34(14), Cl(2)–Nb(1)–Cl(1) = 93.59(5), O(1)-Nb(1)–S(1) = 93.95(14), Cl(3)–Nb(1)–S(1) = 86.16(4), Cl(1)–Nb(1)–S(1) = 77.56(4), Cl(2)–Nb(1)–S(2) = 83.98(5), Cl(3)–Nb(1)–S(2) = 76.86(5), Cl(1)–Nb(1)–S(2) = 85.38(4).

References

S1. M. Ströbele and H.-J. Meyer, Z. Anorg. Allg. Chem., 2002, 628, 488.

On the structure of [Nb₂Cl₄(µ-Se_x)₂{o-C₆H₄(CH₂)₂Se}₄]

As briefly described in the main text there is some ambiguity over the bridging unit. The molecule exhibits inversion symmetry at the centre of the $Nb_2Cl_2Se_{4+x}$ core – the discussions below are with reference to the asymmetric unit.

Initial refinements proceed as expected with the large electron density peak refined as a single Se atom, this has the expected geometry for such a species forming a μ^2 bridge (cf. Ta-Se in $[Ta_2Cl_4(\mu-Se)_2\{o-C_6H_4(CH_2SeMe)_2\}_2]^{11}$ 2.484(2), 2.489(2) Å). However, significant electron density remains asymmetrically above (1.302A) and below (0.982A) this site and free refinement of the occupancies give the values below, and the geometry of the 2 new positions is consistent with an Se₂ unit²⁹ (2.73(1), 2.65(1)Å). The difficulty of interpretation arises from the occupancy sum of 1.0 so that a mixture of single bridge and double bridge situations cannot exist without also involving a partially vacant bridge

site. The complex $[Nb_2Cl_4(S_2)S(tht)_4]^{S2}$ is a sulphur bridged analogue of the minor component reported here.

Refined occupancies of the electron density peaks:

The difference peaks appear to represent real electron density (not Fourier truncation peaks). Refined occupancies (EADP constraints) -0.057, 0.89, 0.057Refined occupancies (no ADP constraints) -0.056, 0.89, 0.059

Selected Bond lengths:

Nb1 –Se3 = 2.4579(8) Å Nb1–Se3a = 2.731 Å (2.618, 2.642, 2.259 Å) Nb1–Se3b = 2.715 Å Se3a–Se3b = 2.283 Å (2.259 Å) Nb1-Nb1ⁱ = 2.898 Å (2.972 Å)

Values in parentheses are from Reference 29 for comparison.

Refinement:

EADP Se3, Se3a & Se3b was required to retain realistic thermal parameters.

Overlay of CCDC CAMZUL (Nb-S)^{S2} and the current structure (Nb-Se) comparing the potentially similar bridging arrangements.

The minor species could also be interpreted as a single bridging Se with a butterfly shape (sometimes sitting above and sometimes below the plane of the major species). We thank a reviewer for this suggestion.

Figure S3. The structure of $[Nb_2Cl_4(\mu-Se_2)(\mu-Se)\{o-C_6H_4(CH_2)_2Se\}_4]$ as refined showing the atom numbering scheme and with ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Nb–Cl1 = 2.384(1), Nb1–Cl2 = 2.372(2), Nb1–Nb1ⁱ = 2.8980(9), Nb1–Se1 = 2.8266(8), Nb1–Se2 = 2.8214(7), Nb1–Se3 = 2.4578(8), Nb1–Se3aⁱ = 2.73(1), Nb1–Se3bⁱ = 2.65(1); Cl1–Nb1–Cl2 = 152.68(6), Se1–Nb1–Se2 = 79.79(2). Symmetry operation: i = 1-x, -y, -z.

Table S1 X-ray crystallographic data

Compound	[NbOCl ₃ (SMe ₂)]	$[NbOCl_3{MeS(CH_2)_2SMe}]$
Formula	C ₂ H ₆ Cl ₃ NbOS	$C_4H_{10}Cl_3NbOS_2$
Formula weight	277.39	337.5
Crystal system	Monoclinic	Triclinic
Space group (no)	$P2_{1}/c$ (14)	P1 (1)
a/ Å	14.352(1)	6.7898(3)
b/ Å	14.9254(7)	6.9745(3)
c/ Å	7.9099(5)	7.2523(4)
α/ deg	90	108.917(4)
β/ deg	97.049(7)	99.404(4)
γ/ deg	90	113.677(4)
U/ Å ³	1681.6(2)	279.93(3)
Z	8	1
μ (Mo-K α)/mm ⁻¹	2.548	2.112
F(000)	1072	166
Total no. reflections	13175	6650
Unique reflections	3295	2205
R _{int}	0.079	0.033
No. of parameters,	149, 0	102, 3
restraints		
$R_{1^{b}}[I_{o} > 2\sigma(I_{o})]$	0.041	0.025
R ₁ (all data)	0.074	0.027
$wR_{2^{b}}[I_{o} > 2\sigma(I_{o})]$	0.069	0.062
wR ₂ (all data)	0.080	0.063

Reference S2. M. G. B. Drew, D. A. Rice and D. M. Williams, J. Chem. Soc., Dalton Trans., 1983, 2251.