1

Electronic Supplementary Information

Palladium complexes with simple iminopyridines as catalysts for polyketone synthesis

Vera Rosar,^a Diana Dedeic,^a Terence Nobile,^a Francesco Fini,^b Gabriele Balducci,^a Enzo Alessio,^a Carla Carfagna^c and Barbara Milani^{a,*}

Figure S1. ¹H NMR spectra in CD_2Cl_2 at 298 K of (a) 1; (b) 2; (c) 4. Aliphatic and aromatic regions are not on scale.

Figure S2. ¹H NMR spectra in CD_2Cl_2 at 298 K of (a) 1a; (b) 2a; (c) 3a; (d) 4a: *cis* (black) and *trans* (red) isomers. Aliphatic and aromatic regions are not on scale.

Figure S3. { 1 H, 1 H}-COSY spectrum in CD₂Cl₂ at 298 K of **1a**, *cis* (black) and *trans* (red) isomers. Aromatic region.

Figure S4. {¹H,¹³C}-HSQC spectrum in CD₂Cl₂ at 298 K of 1a, *cis* (black) and *trans* (red) isomers.

Figure S5. NOE spectra in CD_2Cl_2 at 298 K of **1a** obtained by irradiating the Pd-CH₃ signal of (a) *cis* and (b) *trans* isomer.

Figure S6. $\{^{1}H, ^{1}H\}$ -COSY spectrum in CD₂Cl₂ at 298 K of 2a.

Figure S8. NOE spectra in CD₂Cl₂ at 298 K of 2a obtained by irradiating the Pd-CH₃ signal.

Figure S9. { 1 H, 1 H}-COSY spectrum in CD₂Cl₂ at 298 K of **3a**, *cis* (black) and *trans* (red) isomers. Aromatic region.

Figure S11. NOE spectrum in CD_2Cl_2 at 298 K of **3a** obtained by irradiating the Pd-CH₃ signal of the *cis* isomer (black).

Figure S12. ${}^{1}H, {}^{1}H$ -COSY spectrum in CD₂Cl₂ at 298 K of 4a.

Figure S13. { 1 H, 13 C}-HSQC spectrum in CD₂Cl₂ at 298 K of **4a**. Aromatic region, aliphatic region in the box.

F2 (ppm) **Figure S16.** { 1 H, 15 N}-HMBC spectrum in CD₂Cl₂ at 298 K of ligand **2**. J = 3 Hz.

8.0

7.8

8.2

7.4

7.2

7.0

7.6

-32

-30

-28

-26

-24

8.6

8.4

Figure S17. { ^{1}H , ^{15}N }-HMBC spectrum in CD₂Cl₂ at 298 K of 2a. *J* = 5 Hz. *cis* (black) and *trans* (red) isomers.

Figure S18. { 1 H, 15 N}-HMBC spectrum in CD₂Cl₂ at 298 K of **3a**. *J* = 4 Hz. *cis* (black) and *trans* (red) isomers.

Figure S19. $\{^{1}H, ^{15}N\}$ -HMBC spectrum in CD₂Cl₂ at 298 K of 4. J = 2 Hz.

Figure S20. { 1 H, 15 N}-HMBC spectrum in CD₂Cl₂ at 298 K of 4a. ^{2}J = 4 Hz.

Figure S21. ¹H NMR spectra in CD_2Cl_2 at 298 K of (a) 1b; (b) 2b; (c) 3b; (d) 4b: *cis* (black) and *trans* (red) isomers. Aliphatic and aromatic regions are not on scale.

Figure S22. {¹H, ¹H}-COSY spectrum in CD₂Cl₂ at 298 K of **1b**, *cis* (black) and *trans* (red) isomers. Aromatic region.

Figure S23. { ^{1}H , ^{13}C }-HSQC spectrum in CD₂Cl₂ at 298 K of 1b, *cis* (black) and *trans* (red) isomers.

Figure S24. NOE spectrum in CD_2Cl_2 at 298 K of **1b** obtained by irradiating the Pd-CH₃ signal of the *trans* isomer.

isomers.

isomers.

Figure S27. NOE spectra in CD_2Cl_2 at 298 K of **2b** obtained by irradiating the Pd-CH₃ signal of (a) *cis* and (b) *trans* isomer.

Figure S28. { 1 H, 1 H}-COSY spectrum in CD₂Cl₂ at 298 K of **3b**, *cis* (black) and *trans* (red) isomers. Aromatic region.

Figure S29. { ^{1}H , ^{13}C }-HSQC spectrum in CD₂Cl₂ at 298 K of 3b, *cis* (black) and *trans* (red) isomers.

Figure S30. NOE spectrum in CD_2Cl_2 at 298 K of **3b** obtained by irradiating the Pd-CH₃ signal of the *trans* isomer.

Figure S31. $\{^{1}H, ^{1}H\}$ -COSY spectrum in CD₂Cl₂ at 298 K of 4b.

Figure S32. $\{^{1}H, ^{13}C\}$ -HSQC spectrum in CD₂Cl₂ at 298 K of 4b.

Figure S33. NOE spectrum in CD₂Cl₂ at 298 K of 4b obtained by irradiating the Pd-CH₃.

9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 Figure S34. ¹H NMR spectra in CD_2Cl_2 at 298 K of: a) **1b**; b) **1b** +CO.

Table S1. X ray diffraction data for complexes 1a-	4a
--	-----------

	1a	2a	3a	4a
Formula	$PdClC_{13}H_{13}N_2 \cdot CH_2Cl_2$	$PdClC_{15}H_{17}N_2 \cdot \frac{1}{2}CH_2Cl_2$	$PdClC_{14}H_{15}N_2$	$PdClC_{16}H_{19}N_2$
Formula weight (Da)	424.03	409.65	353.13	381.18
Temperature (K)	100(2)	100(2)	100(2)	100(2)
Wavelength (\mathring{A})	0.700	0.700	0.700	0.700
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space Group	P 21/n	P 2/c	P 21/n	P 21/n
a (Å)	11.948(2)	11.000(9)	9.743(2)	7.488(2)
$\mathbf{b}(\hat{A})$	7.674(2)	7.808(3)	18.454(1)	12.883(1)
$c(\hat{A})$	17.388(3)	19.367(5)	15.501(2)	16.337(1)
α (deg)	90	90	90	90
β (deg)	96.537(4)	104.43(2)	100.64(1)	100.720(5)
γ (deg)	90	90	90	90
$V(A^3)$	1583.9(6)	1610(2)	2739.1(6)	1548.5(4)
Z	4	4	8	4
$\rho (g/cm^{-3})$	1.778	1.689	1.713	1.635
F(000)	840	820	1408	768
$\mu ({\rm mm^{-1}})$	1.578	1.397	1.451	1.290
$\theta \min, \max(\deg)$	1.938, 29.951	1.883, 29.986	1.707, 29.981	1.996, 29.983
Resolution (A)	0.70	0.70	0.70	0.70
Total refl. collctd	28341	68618	99089	55460
Independent refl.	4766	4798	8290	4667
Obs. Refl. $(F_o > 4\sigma F_o)$	4762	4764	8289	4642
I/σ_I (all data)	55.92	58.13	105.57	72.13
$I/\sigma_I \text{ (max resltn)}$	43.78	43.05	76.60	54.93
R_{merge} (all data)	2.6%	4.2%	2.0%	2.7%
R_{merge} (max resltn)	2.3%	4.5%	1.7%	2.3%
Completeness (all data)	0.988	0.985	0.990	0.982
Completeness (max resltn)	0.991	0.975	0.994	0.989
Multiplicity (all data)	5.8	14.2	11.8	11.6
Multiplicity (max resltn)	4.6	11.2	8.9	8.9
Data/restraint/parameters	4766/0/182	4798/0/187	8290/0/326	4667/0/182
$R_{(I>2\sigma(I))}, wR_{2(I>2\sigma(I))}$	0.0288,0.0823	0.0216,0.0578	0.0257, 0.0703	0.0258, 0.0745
R (all data), wR_2 (all data)	0.0288,0.0824	0.0217,0.0579	0.0257, 0.0703	0.0259, 0.0746
GooF	1.051	1.215	1.190	1.092