Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Figure S4. ¹³C NMR spectrum of dihydrazinium BNOA (7)

Figure S8. ¹³C NMR spectrum of bis(guanidinium) BNOA (9)

Figure S12. ¹³C NMR spectrum of bis(diaminoguanidinium) BNOA (11)

Figure S16. ¹³C NMR spectrum of bis(4-amino-1,2,4-triazolium) BNOA (**13**)

2. Crystallographic data

Table S1 Crystallographic data and structure refinement parameters for 5, 7, 8 and 13^[a].

	5	6	8	13
CCDC number	1495666	1495667	1495668	1495669
Empirical formula	$C_{6}H_{2}N_{10}O_{8}$	$C_6H_{10}N_{12}O_9$	$C_6H_8N_{12}O_{10}$	$C_{10}H_{10}N_8O_3$
Mw	342.18	394.26	408.24	510.36
Crystal system	Trigonal	Triclinic	Monoclinic	Monoclinic
Space group	R-3:H	P-1	P1 21/c 1	P 21/c
a[Å]	24.929(3)	8.327(3)	12.4121(19)	8.248(2)
$b[\text{\AA}]$	24.929(3)	8.515(3)	4.1853(7)	16.509(4)
c[Å]	5.2298(9)	10.354(3)	14.866(2)	7.2536(17)
$\alpha[\circ]$	90	85.243(7)	90	90
$\beta[\degree]$	90	83.980(7)	113.460(3)	97.398(5)
γ[°]	120	85.302(7)	90	90
V[Å ³]	2814.7(9)	725.6(4)	708.5(2)	979.5(4)
Ζ	9	2	2	2
T[K]	293(2)	293(2)	130	293(2)
λ[Å]	0.71073	0.71073	0.71073	0.71073
Density[mg m ⁻³]	1.817	1.805	1.914	1.730
μ [mm ⁻¹]	0.168	0.166	0.179	0.150
<i>F</i> (000)	1548	404	416	520
Crystal size[mm ⁻³]	0.180×0.110×0.0	0.20×0.14×0.	0.15×0.12×0.	0.200×0.160×0.1
	80	10	05	20
θ range[°]	2.830-24.958	1.983-24.997	1.789-30.617	2.467-25.499
Index ranges	-29≤h≤29	-9≤h≤9	-17≤h≤13	-9≤h≤9
	-29≤k≤22	-10≤k≤10	-5≤k≤5	-20≤k≤14
	-6≤l≤6	-12≤l≤9	-17≤l≤21	-8≤l≤8
Reflections collected	5145	4026	6729	5442
Independent	1091	2552	2164	1821
reflections	[R(int)=0.0416]	[R(int)=0.028	[R(int)=0.030	[R(int)=0.0320]
		1]	9]	
Data/retraints/paramet	1091/0/114	2552/22/284	2164/0/143	1821/0/175
ers				
GOF	1.108	1.041	1.022	1.080
$R[F^2 > 2\sigma(F^2)]$	0.0403	0.0760	0.0396	0.0448
$wR(F^2)^{[b]}$	0.0971	0.2047	0.0933	0.1085

[a] These data can be obtained free of charge from The Cambridge Cry-tallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

3 Ab Initio computational data

Table S2 Ab Initio computational data.

Compounds	E_0	ZPE	H_{T}	HOF
Compounds	(Hartree)	(Hartree)	(Hartree)	(kJ/mol)
N.O.N	-261.532452	0.045697	0.004418	196.75 ^[1]
CH ₄	-40.3984857	0.044793	0.003812	-74.6 ^[2]
NH ₃	-56.4341763	0.034372	0.003818	-45.9 ^[2]
CH ₃ NH ₂	-95.6318759	0.064032	0.004369	-23.0 ^[2]
NH ₂ NO ₂	-260.5478787	0.039257	0.003356	-6 .1 ^[3]
N-O N-N O-N	-336.5623427	0.048881	0.004895	163.5
CH ₃ CH ₃	-79.6068548	0.00443	0.070179	-84.68 ^[4]

^a Total energy (E_0) calculated by B3LYP/6-31+G**/MP2/6-311++G** method (Hartree/Particle); ^b Zero-point correction (ZPE) (Hartree/Particle); ^c Values of thermal correction (H_T) (Hartree/Particle); ^d Heat of formation (HOT) (kJ/mol).

Calculations were carried out by using the Gaussian 09 (Revision E.01) suite of programs.^[4] The geometric optimization of the structures and frequency analyses were carried out by using the B3LYP functional with the $6-31+G^*$ basis set, and single-point energies were calculated at the MP2(full)/ $6-311++G^*$ level. All of the optimized structures were characterized to be true local energy minima on the potential-energy surface without imaginary frequencies.

Figure S15. Born-Haber cycle for the formation for energetic salts

Based on the Born-Haber energy cycle (Figure 5), the heat of formation of a salt can be simplified according to Equation (1), where ΔH_L is the lattice energy of the salt.

 $\Delta H_{\rm f}^{\rm o}(\text{ionic salt}, 298\text{K}) = \Delta H_{\rm f}^{\rm o}(\text{cation}, 298\text{K}) + \Delta H_{\rm f}^{\rm o}(\text{anion}, 298\text{K}) - \Delta H_{\rm L}$ (1)

The $\Delta H_{\rm L}$ value could be predicted by the formula suggested by Jenkins et al [Eq. (2)], ^[5] where $U_{\rm POT}$ is the lattice potential energy and nM and nX depend on the nature of the ions M^{p+} and X^{q-}, respectively, and are equal to three for monoatomic ions, five for linear polyatomic ions, and six for nonlinear polyatomic ions.

 $\Delta H_{\rm L} = U_{\rm POT} + [p(n_{\rm M}/2-2) + q(n_{\rm X}/2-2)]RT$

(2)

The equation for the lattice potential energy, U_{POT} , takes the form of Equation (3), where ρ_m is the density (g cm⁻³), M_m is the chemical formula mass of the ionic material (g), and the coefficients γ (kJ⁻¹mol⁻¹cm) and δ (kJ⁻¹mol⁻¹) are assigned literature values. ^[5]

 $U_{\rm POT} \,(\rm kJ^{-1}mol^{-1}) = \gamma \,(\rho_m/Mm)^{1/3} + \delta$ (3)

4 Detonation performances calculation

Detonation pressure (P) and detonation velocity (D) were calculation according to the Kamlet-Jacobs equations[[]

5]

$$D = 1.01(N \ M^{1/2} Q^{1/2})^{1/2} (1 + 1.30\rho)$$
(4)

$$P = 1.558\rho^2 M^{1/2} Q^{1/2}$$
(5)

where each term in eqs 4 and 5 is defined as follows: *D*, the detonation velocity (km s⁻¹); *P*, the detonation pressure (GPa); *N*, the moles of detonation gases per gram explosive; \overline{M} , the average molecular weight of these gases (g mol⁻¹); *Q*, the heat of detonation (J g⁻¹); and ρ , the loaded density of explosives (g cm⁻³). The measured density was used for the calculation here.

- Chem. Phys. 1968, 48, 36-42; (c) M. J. Kamlet , C. Dicknison, J. Chem. Phys. 1968, 48, 43-49. (d) H.
- Gao, C. Ye, C. Piekarski, J. M. Shreeve, J. Phys. Chem. C 2007, 111, 10718-10731.

¹ Wang R, Guo Y, Zeng Z, et al. Chem. Eur. J., 2009, 15, 2625-2634.

² Eur. J. Inorg. Chem., 2008, 2560-2568.

³ Wang K, Parrish D A, Shreeve J M. Chem. Eur. J., 2011, 17, 14485-14492.

⁴ New J. Chem., 2008, 32, 317-322.

^{5 (}a) M. J. Kamlet, S. J. Jacobs, J. Chem. Phys. 1968, 48, 23-35; (b) M. J. Kamlet, J. E. Ablard, J.