Supporting Information

Alkyl Grignard cross-coupling of aryl phosphates catalyzed by new, highly active ionic iron(II) complexes containing a phosphine ligand and an imidazolium cation

Zhuang Li, Ling Liu, Hong-mei Sun,* Qi Shen and Yong Zhang

The Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China

*Corresponding author

Received date (automatically inserted by publisher); E-mail: sunhm@suda.edu.cn (H.-M. Sun)

Page S2–S4: X-ray Crystallographic Data for Iron(II) complexes Page S5: Typical procedures of attempts to synthesize the corresponding neutral iron(II) complex containing both a phosphine ligand and an NHC ligand Page S6–S11: Spectral Data of Cross-Coupling Products Page S12–S44: Copies of NMR Spectra for All Compounds Page S45: References X-ray Structural Determination. Single crystals of 1-6 for X-ray diffraction studies were sealed in a thin-walled glass capillary. The data were collected on a Rigaku Mercury CCD area detector at 293(2) K (1, 3, 4 and 5), 273(2) K (2) and 173(2) K (6). Structures were solved by direct methods and refined by full-matrix least-squares procedures based on F^2 using SHELXS-97 and SHELXL-97 programs. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were assigned to idealized positions and were included in structure factor calculations.

	1.THF	2	3 ·3THF	
Formula	C ₃₅ H ₅₃ Cl ₃ FeN ₂ O ₂	C45H52Cl3FeN2P	C ₅₇ H ₉₄ Cl ₃ FeN ₂ O ₃ P	
Formula weight	695.99	814.06	1048.51	
Temperature / K	293(2)	273(2)	293(2)	
Radiation used	Mo-Ka	Mo-Ka	Mo-Ka	
Crystal system	Monoclinic	Orthorhombic	Orthorhombic	
Space group	P21/c	P na 2_1	Pnma	
Unit cell dimensions				
<i>a</i> / Å	12.168 (2)	17.2349(13)	17.6972(7)	
b / Å	32.246(6)	14.0856(9)	16.5426(7)	
<i>c</i> / Å	9.841(2)	17.5383(13)	22.9862(10)	
β / °	96.59(3)	90	90	
V / Å ³	3835.7(13)	4257.7(5)	6729.4(5)	
Ζ	4	4	4	
D_c / g cm ⁻³	1.205	1.270	1.035	
μ / mm ⁻¹	0.632	0.573	0.403	
<i>F</i> (000)	1480	2398	2264	
heta range / °	2.82-25.00	2.89-27.50	2.86-25.00	
Reflection collected	22584	29854	32299	
Independent reflections, $R_{\rm int}$	6751, 0.0298	9027, 0.0319	6146, 0.0796	
Goodness-of-fit on F^2	0.989	1.163	1.198	
$R_1, wR_2 [I > 2\sigma(I)]$	0.0528, 0.1213	0.0524, 0.1474	0.1008, 0.3036	
R_1 , wR_2 (all data)	0.0688, 0.1288	0.0542, 0.1528	0.1402, 0.3424	

Table S1 X-ray Crystallographic Data for 1–3

	4	5·THF	6 •2THF	
Formula	C45H52Br3FeN2P	C49H78Br3FeN2OP	C47H74Br3FeN2O2P	
Formula weight	947.44	1037.65	1025.63	
Temperature / K	293(2)	293(2)	173(2)	
Radiation used	Mo-Ka	Mo-Ka	Mo-Ka	
Crystal system	Monoclinic	Orthorhombic	triclinic	
Space group	Pna21	$P2_{1}2_{1}2_{1}$	P-1	
Unit cell dimensions				
<i>a</i> / Å	17.4631(9)	14.7396(4)	11.3255(4)	
b / Å	14.2501(5)	15.5290(5)	13.2264(5)	
<i>c</i> / Å	17.9938(10)	23.4470(5)	18.6540(9)	
eta / °	90	90	102.8	
$V / Å^3$	4477.8(4)	5366.8(3)	2554.82(18)	
Ζ	4	4	2,	
D_c / g cm ⁻³	1.405	1.279	1.333	
μ / mm ⁻¹	3.081	2.577	2.708	
<i>F</i> (000)	1928	2144	1064	
heta range / °	2.86-25.00	2.90-25.00	2.91-25.00	
Reflection collected	17111	24539	23091	
Independent reflections, R_{int}	6816, 0.0491	9306, 0.0484	9001, 0.0555	
Goodness-of-fit on F^2	1.013	1.026	1.068	
$R_1, wR_2[I > 2\sigma(I)]$	0.0540, 0.1179	0.0444, 0.0844	0.0782, 0.2018	
R_1 , wR_2 (all data)	0.0870, 0.1347	0.0789, 0.0965	0.1340, 0.2405	

Table S2 X-ray Crystallographic Data for 4–6

Typical procedures of attempts to synthesize the corresponding neutral iron(II) complex containing both a phosphine ligand and an NHC ligand

A Schlenk flask was charged with [HIPr][Fe(PPh₃)Br₃] (4) or [HIPr][Fe(PCy₃)Br₃] (5) (1.80 mmol), THF (40.0 mL), and a stirring bar. To this solution was added dropwise a hexane or THF solution of bases (1.80 mmol) at 0 °C. The resulting solution changed color from yellow to pale gray immediately. The reaction mixture was stirred for 0.5 h and slowly warmed to room temperature for an additional 4 h. The reaction solution was filtered, and evaporated to dryness. The residue was washed with hexane (3 × 10.0 mL), extracted with toluene (3 × 10.0 mL), and crystallized from concentrated toluene at 0 °C. The target iron(II) complex, Fe(PPh₃)(IPr)Br₂, was unsuccessfully isolated, but [HIPr][Fe(IPr)Br₃]·C₇H₈¹ was unexpectedly isolated from concentrated toluene.

Spectral data of the cross-coupling products

1-octylnaphthalene (**3ab**).²: ¹H NMR (400 MHz, CDCl₃) $\delta = 0.88$ (t, J = 6.5 Hz, 3H), 1.25–1.46 (m, 10H), 1.70–1.78 (m, 2H), 3.05 (t, J = 7.8 Hz, 2H), 7.30 (d, J = 6.8 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 7.43–7.50 (m, 2H), 7.69 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 7.6 Hz, 1H), 8.04 (d, J = 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 13.7$, 22.3, 28.9, 29.1, 29.4, 30.4, 31.5, 32.7, 123.5, 124.9, 125.08, 125.15, 125.4, 125.9, 128.3, 131.5, 133.4, 138.6.

1-hexylnaphthalene (**3ac**).³ ¹H NMR (400 MHz, CDCl₃) $\delta = 0.88$ (t, J = 7.0 Hz, 3H), 1.25–1.45 (m, 6H), 1.68–1.76 (m, 2H), 3.02 (t, J = 7.8 Hz, 2H), 7.27 (d, J = 6.8 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.39–7.48 (m, 2H), 7.66 (d, J = 8.1 Hz, 1H), 7.80 (d, J = 7.7 Hz, 1H), 8.01 (d, J = 8.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 14.3$, 22.9, 29.7, 31.0, 32.0, 33.3, 124.1, 125.5, 125.68, 125.75, 126.0, 126.5, 128.9, 132.1, 134.1, 139.2.

1-butylnaphthalene (**3aa**).³ ¹H NMR (400 MHz, CDCl₃) $\delta = 0.95$ (t, J = 7.3 Hz, 3H), 1.39–1.48 (m, 2H), 1.68–1.75 (m, 2H), 3.04 (t, J = 7.8 Hz, 2H), 7.28 (d, J = 6.9 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.41–7.49 (m, 2H), 7.67 (d, J = 8.1 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 8.02 (d, J = 8.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 13.6$, 22.5, 32.4, 32.6, 123.5, 125.0, 125.1, 125.2, 125.5, 126.0, 128.4, 131.6, 133.5, 138.4.

1-ethylnaphthalene (**3ad**).⁴ ¹H NMR (400 MHz, CDCl₃) δ = 1.37 (t, *J* = 7.5 Hz, 3H), 3.07–3.13 (m, 2H), 7.32 (d, *J* = 7.0 Hz, 1H), 7.37–7.41 (m, 1H), 7.43–7.51 (m, 2H), 7.69 (d, *J* = 8.1 Hz, 1H), 7.82–7.85 (m, 1H), 8.03–8.05 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 14.6, 25.4, 123.3, 124.4, 124.9, 125.2, 125.9, 127.4, 128.3, 131.3, 133.3, 139.8.

1-isobutylnaphthalene (**3af**).⁵ ¹H NMR (400 MHz, CDCl₃) δ = 0.95 (d, *J* = 6.6 Hz, 6H), 2.00–2.10 (m, 1H), 2.90 (d, *J* = 7.2 Hz, 2H), 7.24 (d, *J* = 6.9 Hz, 1H), 7.33–7.37 (m, 1H), 7.40–7.47 (m, 2H), 7.67

(d, J = 8.2 Hz, 1H), 7.81 (d, J = 7.5 Hz, 1H), 8.00 (d, J = 8.1 Hz, 1H).¹³C NMR (100 MHz, CDCl₃) δ = 22.5, 29.2, 42.3, 123.9, 124.99, 125.01, 125.2, 126.2, 126.7, 128.4, 131.9, 133.7, 137.5.

1-neopentylnaphthalene (**3ag**).⁶ ¹H NMR (400 MHz, CDCl₃) $\delta = 0.96$ (s, 9H), 3.00 (s, 2H), 7.27 (d, J = 7.1 Hz, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.38–7.46 (m, 2H), 7.69 (d, J = 8.2 Hz, 1H), 7.79–7.81 (m, 1H), 8.10 (d, J = 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 22.5$, 29.2, 42.3, 123.9, 124.99, 125.01, 125.2, 126.2, 126.7, 128.4, 131.9, 133.7, 137.5.

1-(3-phenylpropyl)naphthalene (**3ah**).⁷ ¹H NMR (400 MHz, CDCl₃) δ = 2.04–2.11 (m, 2H), 2.73 (t, *J* = 7.7 Hz, 2H), 3.08 (t, *J* = 7.7 Hz, 2H), 7.17–7.20 (m, 3H), 7.25–7.30 (m, 3H), 7.35–7.38 (m, 1H), 7.41–7.48 (m, 2H), 7.68 (d, *J* = 8.1 Hz, 1H), 7.80–7.84 (m, 1H), 7.93–7.95 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 31.8, 32.1, 35.5, 123.4, 125.0, 125.1, 125.3, 125.4, 125.5, 126.1, 127.9, 128.1, 128.3, 131.5, 133.5, 138.0, 141.8.

1-(dec-9-en-1-yl)naphthalene (**3ai**). ¹H NMR (400 MHz, CDCl₃) δ = 1.34–1.53 (m, 8H), 1.70–1.75 (m, 2H), 1.81–1.88 (m, 2H), 2.07–2.14 (m, 2H), 3.16 (t, *J* = 7.6 Hz, 2H), 5.46–5.57 (m, 2H), 7.41 (d, *J* = 6.8 Hz, 1H), 7.47–7.50 (m, 1H), 7.54–7.61 (m, 2H), 7.79 (d, *J* = 8.1 Hz, 1H), 7.94 (d, *J* = 7.7 Hz, 1H), 8.14 (d, *J* = 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 17.5, 28.7, 29.0, 29.2, 29.4, 30.4, 32.2, 32.7, 123.5, 124.2, 124.9, 125.1, 125.2, 125.4, 125.9, 128.3, 131.2, 131.5, 133.5, 138.6. HRMS (CI) Calcd for C₂₀H₂₇ (M+H) ⁺: 267.2107, Found: 267.2115.

1-(6-methoxyhexyl)naphthalene (**3aj**). ¹H NMR (400 MHz, CDCl₃) δ = 1.29–1.42 (m, 4H), 1.48–1.54 (m, 2H), 1.65–1.72 (m, 2H), 2.99 (t, *J* = 7.8 Hz, 2H), 3.25 (s, 3H), 3.29 (t, *J* = 6.6 Hz, 2H), 7.23 (d, *J* = 6.7 Hz, 1H), 7.29–7.33 (m, 1H), 7.36–7.44 (m, 2H), 7.62 (d, *J* = 8.1 Hz, 1H), 7.75–7.78 (m, 1H), 7.96 (d, *J* = 8.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 25.6, 29.17, 29.19, 30.3, 32.6, 58.1, 72.4, 123.4, 124.9, 125.1, 125.2, 125.4, 125.9, 128.3, 131.4, 133.4, 138.4. HRMS (CI) Calcd for C₁₇H₂₃O (M+H) ⁺: 243.1743, Found: 243.1750.

5-(((8-(naphthalen-1-yl)octyl)oxy)methyl)benzo[d][1,3]dioxole (**3ak**). ¹H NMR (400 MHz, CDCl₃) $\delta = 1.30-1.44$ (m, 8H), 1.55-1.60 (m, 2H), 1.70-1.77 (m, 2H), 3.05 (t, J = 7.8 Hz, 2H), 3.41 (t, J = 6.7 Hz, 2H), 4.38 (s, 2H), 5.91 (s, 2H), 6.74-6.78 (m, 2H), 6.84 (s, 1H), 7.30 (d, J = 7.0 Hz, 1H), 7.38 (t, J = 7.1 Hz, 1H), 7.44-7.51 (m, 2H), 7.69 (d, J = 8.1 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 8.03 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 25.75$, 29.00, 29.30, 29.32, 30.38, 32.65, 69.8, 72.3, 100.5, 107.6, 107.9, 120.7, 123.4, 124.9, 125.1, 125.2, 125.4, 125.9, 128.3, 131.5, 132.2, 133.4, 138.5, 146.5, 147.3. HRMS (CI) Calcd for C₂₆H₃₁O₃(M+H) +: 391.2268, Found: 391.2284.

2-(6-(naphthalen-4-yl)hexyl)furan (3al). ¹H NMR (400 MHz, CDCl₃) δ = 1.31–1.49 (m, 8H), 1.65–1.70 (m, 2H), 1.76–1.84 (m, 2H), 2.66 (t, *J* = 7.5 Hz, 2H), 3.12 (t, *J* = 7.9 Hz, 2H), 6.02–6.03 (m, 1H), 6.32–6.33 (m, 1H), 7.35–7.36 (m, 1H), 7.38 (s, 1H), 7.43–7.47 (m, 1H), 7.50–7.58 (m, 2H), 7.76 (d, *J* = 8.2 Hz, 1H), 7.89–7.91 (m, 1H), 8.10 (d, *J* = 8.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 27.48, 27.54, 28.7, 28.9, 28.9, 29.3, 30.4, 32.6, 104.0, 109.5, 123.4, 124.9, 125.1, 125.1, 125.4, 125.9, 128.3, 131.4, 133.4, 138.5, 140.1, 156.1. HRMS (CI) Calcd for C₂₆H₃₁O₃(M+H) ⁺: 307.2056, Found: 307.2050.

1-cyclohexylnaphthalene (**3am**).⁵ ¹H NMR (400 MHz, CDCl₃) δ = 1.27–1.40 (m, 1H), 1.49–1.60 (m, 4H), 1.80–1.85 (m, 1H), 1.89–1.92 (m, 2H), 1.98–2.06 (m, 2H), 3.28–3.34(m, 1H), 7.36–7.38 (m, 1H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.43–7.45 (m, 1H), 7.48–7.50 (m, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.82–7.84 (m, 1H), 8.10 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 26.6, 27.4, 34.3, 39.3, 122.3, 123.3, 125.3, 125.6, 125.7, 126.3, 129.0, 131.4, 134.0, 143.9.

1-cyclopentylnaphthalene (**3an**).⁸ ¹H NMR (400 MHz, CDCl₃) $\delta = 1.75-1.85$ (m, 6H), 2.17–2.18 (m, 2H), 3.72–3.80 (m, 1H), 7.37–7.41 (m, 2H), 7.41–7.49 (m, 2H), 7.65–7.68 (m, 1H), 7.80–7.82 (m, 1H), 8.13 (d, J = 8.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 25.1$, 33.3, 40.9, 121.7, 123.7, 124.9, 125.2, 125.3, 126.0, 128.5, 132.0, 133.6, 141.8.

1-sec-butylnaphthalene (**3ao**). ¹H NMR (400 MHz, CDCl₃) $\delta = 0.92$ (t, J = 7.4 Hz, 3H), 0.97 (t, J = 7.5 Hz, 0.67H), 1.37 (t, J = 6.9 Hz, 3H), 1.41–1.50 (m, 0.48H), 1.65–1.77 (m, 1.5H), 1.80–1.91 (m,

1H), 3.06 (t, J = 7.8 Hz, 0.45H), 3.06 (t, J = 7.8 Hz, 0.45H), 3.47–3.55 (m, 1H), 7.31 (d, J = 7.8 Hz, 0.24H), 7.36–7.40 (m, 1H), 7.42–7.52 (m, 3.45H), 7.69 (d, J = 8.1 Hz, 3.45H), 7.84–7.86 (m, 1H), 8.04 (d, J = 8.2 Hz, 0.22H), 8.12 (d, J = 8.3 Hz, 1H).

2-octylnaphthalene (**3bb**).⁴ ¹H NMR (400 MHz, CDCl₃) $\delta = 0.87$ (t, J = 7.0 Hz, 3H), 1.10–1.46 (m, 10H), 1.63–1.68 (m, 2H), 2.72 (t, J = 7.6 Hz, 2H), 7.28 (d, J = 8.3 Hz, 1H), 7.34–7.41 (m, 2H), 7.56 (s, 1H), 7.70–7.76 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 13.8$, 22.4, 29.0, 29.1, 29.2, 31.1, 31.6, 35.8, 124.6, 125.4, 125.9, 127.06, 127.09, 127.3, 127.4, 131.6, 133.3, 140.1.

2-hexylnaphthalene (**3bc**).⁹ ¹H NMR (400 MHz, CDCl₃) $\delta = 0.88$ (t, J = 7.0 Hz, 3H), 1.25–1.38 (m, 6H), 1.65–1.72 (m, 2H), 2.75 (t, J = 7.8 Hz, 2H), 7.30–7.33 (m, 1H), 7.37–7.44 (m, 2H), 7.59 (s, 1H), 7.73–7.79 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 14.2$, 22.7, 29.1, 31.4, 31.8, 36.2, 125.0, 125.8, 126.3, 127.4, 127.5, 127.8, 132.0, 133.7, 140.5.

2-sec-butylnaphthalene (**3bo**). ¹H NMR (400 MHz, CDCl₃) δ = 0.85 (t, *J* = 7.4 Hz, 3H), 0.94 (t, *J* = 7.3 Hz, 1H), 1.32 (d, *J* = 6.9 Hz, 3H), 1.34–1.44 (m, 0.76H), 1.61–1.76 (m, 2.75H), 2.72–2.81 (m, 1.71H), 7.32–7.36 (m, 1.31H), 7.38–7.46 (m, 2.67H), 7.60 (s, 1H), 7.74–7.80 (m, 4H).

1-hexyl-4-methoxynaphthalene (**3cc**). ¹H NMR (400 MHz, CDCl₃) $\delta = 0.95$ (t, J = 7.1 Hz, 3H), 1.37–1.40 (m, 4H), 1.44–1.50 (m, 2H), 1.63 (s, 3H), 1.72–1.80 (m, 2H), 3.03 (t, J = 7.8 Hz, 2H), 4.04 (s, 3H), 6.79 (d, J = 7.8 Hz, 1H), 7.24 (d, J = 7.7 Hz, 1H), 7.50–7.59 (m, 2H), 8.03 (d, J = 8.0 Hz, 1H), 8.34–8.36 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 13.7$, 22.2, 29.0, 30.4, 31.3, 32.2, 55.0, 102.9, 122.0, 123.3, 124.2, 124.9, 125.4, 125.6, 130.4, 132.2, 153.5. HRMS (CI) Calcd for C₁₇H₂₃O (M+H) ⁺: 243.1743, Found: 243.1750.

2-hexylpyridine (**3dc**).⁵ ¹H NMR (400 MHz, CDCl₃) $\delta = 0.78$ (t, J = 7.0 Hz, 3H), 1.19–1.28 (m, 6H), 1.59–1.67 (m, 2H), 2.68 (t, J = 7.6 Hz, 2H), 6.95–6.98 (m, 1H), 7.02 (d, J = 7.8 Hz, 1H), 7.43–7.47 (m, 1H), 8.41–8.42 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 13.5$, 22.0, 28.5, 29.3, 31.2, 37.9, 120.2, 122.1, 135.6, 148.6, 161.9.

2-cyclohexylpyridine (**3dm**).^{10 1}H NMR (400 MHz, CDCl₃) δ = 1.23–1.34 (m, 1H), 1.36–1.47 (m, 2H), 1.48–1.58 (m, 2H), 1.72–1.79 (m, 1H), 1.84–1.89 (m, 2H), 1.94–1.97 (m, 2H), 2.66–2.74 (m, 1H), 7.07–7.10 (m, 1H), 7.15 (d, *J* = 7.9 Hz, 1H), 7.57–7.62 (m, 1H), 8.52–8.54 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 25.6, 26.1, 32.4, 46.1, 120.5, 135.9, 148.5, 166.0.

3-hexylpyridine (**3ec**).⁵ ¹H NMR (400 MHz, CDCl₃) δ = 0.88 (t, *J* = 6.9 Hz, 3H), 1.25–1.36 (m, 6H), 1.57–1.64 (m, 2H), 2.59 (t, *J* = 7.8 Hz, 2H), 7.17–7.20 (m, 1H), 7.48 (d, *J* = 7.8 Hz, 1H), 8.41–8.44 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 13.5, 22.0, 28.3, 30.6, 31.1, 32.5, 122.7, 135.4, 137.5, 146.5, 149.3.

4-hexyl-1,1'-Biphenyl (**3fc**).⁷ ¹H NMR (400 MHz, CDCl₃) δ = 0.89 (t, *J* = 6.9 Hz, 3H), 1.29–1.38 (m, 6H), 1.60–1.68 (m, 2H), 2.63 (t, *J* = 7.9 Hz, 2H), 7.24 (d, *J* = 8.1 Hz, 2H), 7.28–7.32 (m, 1H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.49–7.51 (m, 2H), 7.56–7.59 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 13.7, 22.2, 28.6, 31.1, 31.3, 35.2, 126.51, 126.55, 128.3, 128.4, 138.1, 140.8, 141.7.

F₃C

2-hexyl-1,1'-biphenyl (**3gc**).⁷ ¹H NMR (400 MHz, CDCl₃) δ = 0.84 (t, *J* = 6.9 Hz, 3H), 1.16–1.28 (m, 6H), 1.44–1.51 (m, 2H), 2.58 (t, *J* = 7.9 Hz, 2H), 7.21–7.26 (m, 2H), 7.27–7.30 (m, 1H), 7.30–7.32 (m, 2H), 7.33–7.35 (m, 1H), 7.35–7.38 (m, 1H), 7.41–7.45 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 13.5, 22.0, 26.1, 30.6, 32.2, 44.7, 115.3, 120.4, 127.4, 127.6, 128.6, 128.7, 128.8, 129.8, 136.6, 151.9.

1-hexyl-4-(trifluoromethyl)benzene (**3hc**).¹² ¹H NMR (400 MHz, CDCl₃) δ = 0.94 (t, *J* = 6.9 Hz, 3H), 1.32–1.43 (m, 6H), 1.64–1.71 (m, 2H), 2.71 (t, *J* = 7.8 Hz, 2H), 7.34 (d, *J* = 7.9 Hz, 2H), 7.58 (d, *J* = 7.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 13.58, 13.64, 22.1, 22.22, 28.4, 28.9, 29.19, 29.23, 30.7, 31.2, 31.5, 35.3, 124.6, 124.67, 124.71, 128.2.

1-hexyl-3-(trifluoromethyl)benzene (**3ic**). ¹H NMR (400 MHz, CDCl₃) $\delta = 0.88$ (t, J = 7.0 Hz, 3H), 1.26–1.35 (m, 6H), 1.58–1.66 (m, 2H), 2.65 (t, J = 7.9 Hz, 2H), 7.33–7.39 (m, 2H), 7.42–7.44 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 13.6$, 22.1, 28.4, 30.8, 31.2, 35.3, 121.97, 122.01, 124.55, 124.59, 128.1, 131.30, 131.31, 143.3. HRMS (CI) Calcd for C₁₃H₁₈F₃(M+H)⁺: 231.1355, Found: 231.1355.

1-hexyl-3-methoxybenzene (**3jc**).¹¹ ¹H NMR (400 MHz, CDCl₃) $\delta = 0.88$ (t, J = 6.6 Hz, 3H), 1.30–

1.36 (m, 6H), 1.56–1.64 (m, 2H), 2.57 (t, J = 7.9 Hz, 2H), 3.77 (s, 3H), 6.70–6.72 (m, 2H), 6.76 (d, J = 7.6 Hz, 1H), 7.15–7.20 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 13.7, 22.2, 28.6, 30.9, 31.3, 35.6, 54.6, 110.3, 113.7, 120.4, 128.7, 144.2, 159.1.

.

1-(4-methoxyphenyl)naphthalene (**3aq**).¹³ ¹H NMR (400 MHz, CDCl₃) δ = 3.96 (s, 3H), 7.10–7.12 (m, 2H), 7.47–7.52 (m, 4H), 7.54–7.60 (m, 2H), 7.91 (d, *J* = 8.2 Hz, 1H), 7.96–8.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 54.9, 113.3, 124.9, 125.2, 125.5, 125.6, 126.5, 126.9, 127.8, 130.7, 131.37, 132.7, 133.4, 139.5.

Copies of NMR Spectra for All Compounds

Figure S1. ¹H NMR spectrum of [HIPr][Fe(C_4H_8O)Cl₃] (1) in (CD₃)₂CO.

Figure S2. ¹H NMR spectrum of [HIPr][Fe(PPh₃)Cl₃] (2) in $(CD_3)_2CO$.

Figure S3. ¹H NMR spectrum of [HIPr][Fe(PCy₃)Cl₃] (3) in $(CD_3)_2CO$.

Figure S4. ¹H NMR spectrum of [HIPr][Fe(PPh₃)Br₃] (4) in $(CD_3)_2CO$.

Figure S5. ¹H NMR spectrum of [HIPr][Fe(PCy₃)Br₃] (5) in $(CD_3)_2CO$.

Figure S6. ¹H NMR spectrum of [HIMes][Fe(PCy₃)Br₃] (6) in (CD₃)₂CO.

Figure S7. ¹H NMR spectrum of 1-octylnaphthalene (3ab) in CDCl₃.

Figure S8. ¹³C NMR spectrum of 1-octylnaphthalene (3ab) in CDCl₃.

Figure S10. ¹³C NMR spectrum of 1-hexylnaphthalene (3ac) in CDCl₃.

Figure S12. ¹³C NMR spectrum of 1-butylnaphthalene (3aa) in CDCl₃.

Figure S14. ¹³C NMR spectrum of 1-ethylnaphthalene (3ad) in CDCl₃.

Figure S16. ¹³C NMR spectrum of 1-isobutylnaphthalene (3af) in CDCl₃.

Figure S18. ¹³C NMR spectrum of 1-neopentylnaphthalene (3ag) in CDCl₃.

70 60 fl (ppm) -10

Figure S20. ¹³C NMR spectrum of 1-neopentylnaphthalene (3ah) in CDCl₃.

Figure S22. ¹³C NMR spectrum of 1-(dec-9-en-1-yl)naphthalene (3ai) in CDCl₃.

Figure S23. ¹H NMR spectrum of 1-(6-methoxyhexyl)naphthalene (3aj) in CDCl₃.

Figure S24. ¹³C NMR spectrum of 1-(6-methoxyhexyl)naphthalene (3aj) in CDCl₃.

yl)octyl)oxy)methyl)benzo[d][1,3]dioxole (3ak) in CDCl₃.

Figure S26. ¹³C NMR spectrum of 5-(((8-(naphthalen-1-

yl)octyl)oxy)methyl)benzo[d][1,3]dioxole (3ak) in CDCl₃.

Figure S27. ¹H NMR spectrum of 2-(8-(naphthalen-1-yl)octyl)furan (3al) in CDCl₃.

Figure S28. ¹³C NMR spectrum of 2-(8-(naphthalen-1-yl)octyl)furan (3al) in

CDCl₃.

Figure S29. ¹H NMR spectrum of 1-cyclohexylnaphthalene (3am) in CDCl₃.

Figure S30. ¹³C NMR spectrum of 1-cyclohexylnaphthalene (3am) in CDCl₃.

Figure S31. ¹H NMR spectrum of 1-cyclopentylnaphthalene (3an) in CDCl₃.

Figure S32. ¹³C NMR spectrum of 1-cyclopentylnaphthalene (3an) in CDCl₃.

Figure S33. ¹H NMR spectrum of 1-sec-butylnaphthalene (3ao) in CDCl₃.

Figure S35. ¹³C NMR spectrum of 2-octylnaphthalene (3bb) in CDCl₃.

Figure S37. ¹³C NMR spectrum of 2-hexylnaphthalene (3bc) in CDCl₃.

Figure S38. ¹H NMR spectrum of 2-sec-butylnaphthalene (3bo) in CDCl₃.

Figure S39. ¹H NMR spectrum of 1-hexyl-4-methoxynaphthalene (3cc) in CDCl₃.

Figure S40. ¹³C NMR spectrum of 1-hexyl-4-methoxynaphthalene (3cc) in CDCl₃.

Figure S41. ¹H NMR spectrum of 2-hexylpyridine (3dc) in CDCl₃.

Figure S42. ¹³C NMR spectrum of 2-hexylpyridine (3dc) in CDCl₃.

Figure S43. ¹H NMR spectrum of 2-cyclohexylpyridine (3dm) in CDCl₃.

Figure S44. ¹³C NMR spectrum of 2-cyclohexylpyridine (3dm) in CDCl₃.

Figure S45. ¹H NMR spectrum of 3-hexylpyridine (3ec) in CDCl₃.

Figure S46. ¹³C NMR spectrum of 3-hexylpyridine (3ec) in CDCl₃.

Figure S47. ¹H NMR spectrum of 4-hexyl-1,1'-Biphenyl (3fc) in CDCl₃.

	141.7 140.8 140.8 138.1	L 128.4 L 128.3 T 126.5		~ 35.2 ~ 35.2 ~ 31.3 ~ 28.6	- 22.2	— 13.7
--	-------------------------	-------------------------------	--	--------------------------------------	--------	--------

Figure S48. ¹³C NMR spectrum of 4-hexyl-1,1'-Biphenyl (3fc) in CDCl₃.

Figure S50. ¹³C NMR spectrum of 2-hexyl-1,1'-Biphenyl (3gc) in CDCl₃.

CDCl₃.

Figure S52. ¹³C NMR spectrum of 1-hexyl-4-(trifluoromethyl)benzene (3hc) in

CDCl₃.

CDCl₃.

Figure S54. ¹³C NMR spectrum of **1-(trifluoromethyl)-3-hexylbenzene (3ic)** in CDCl₃.

Figure S56. ¹³C NMR spectrum of 1-hexyl-3-methoxybenzene (3jc) in CDCl₃.

Figure S57. ¹H NMR spectrum of 1-(4-methoxyphenyl)naphthalene (3aq) in CDCl₃.

Figure S58. ¹C NMR spectrum of 1-(4-methoxyphenyl)naphthalene (3aq) in CDCl₃.

REFERENCES

- H. H. Gao, C. H. Yan, X. P. Tao, Y. Xia, H. M. Sun, Q. Shen and Y. Zhang, *Organometallics*, 2010, 29, 4189–4192.
- 2 B. Shrestha, S. Thapa, S. K. Gurung, R. A. S. Pike and R. Giri, *J. Org. Chem.*, 2016, **81**, 787–802.
- 3 S. Luo, D. G. Yu, R. Y. Zhu, X. Wang, L. Wang and Z. J. Shi, *Chem. Commun.*, 2013, **49**, 7794–7796.
- 4 X. Q. Liu, C.-C. Hsiao, I. Kalvet, M. Leiendecker, L. Guo, F. Schoenebeck and M. Rueping, *Angew. Chem. Int. Ed.*, 2016, **55**, 6093–6098.
- 5 A. L. Silberstein, S. D. Ramgren and N. K. Garg, Org. Lett., 2012, 14, 3796–3799.
- 6 Z. Z. Zong, W. X. Wang, X. H. Bai, H. Xi and Z. P. Li, Asian J. Org. Chem., 2015, 4, 622– 625.
- 7 T. Takeda, Y. Takeda and A. Tsubouchi, Chem. Lett., 2015, 44, 809–811.
- 8 Z. L. Liu, N. N. Dong, M. Z. Xu, Z. M. Sun and T. Tu, J. Org. Chem., 2013, 78, 7436–7444.
- 9 S. F. Zhu, Y. L. Xiao, Z. J. Guo and H. F. Jiang, Org. Lett., 2013, 15, 898–901.
- 10 P. C. Too, G. H. Chan, Y. L. Tnay, H. Hirao and S. Chiba, *Angew. Chem.*, 2016, **128**, 3783 3787.
- 11 S. H. Teo, Z. Q. Weng and T. S. A. Hor, J. Organometallic Chem., 2011, 696, 2928–2934.
- 12 X. Wang, Y. Xu, F. Y. Mo, G. J. Ji, D. Qiu, J. J. Feng, Y. X. Ye, S. N. Zhang, Y. Zhang and J. B. Wang, J. Am. Chem. Soc., 2013, 135, 10330–10333.
- I. Stibingerova, S. Voltrova, S. Kocova, M. Lindale and J. Srogl, Org. Lett., 2016, 18, 312– 315.