Mercury capture on a supported chlorocuprate(II) ionic liquid adsorbent studied using *operando* synchrotron X-ray absorption spectroscopy

Roberto Boada,^a Giannantonio Cibin,^a Fergal Coleman,^b Sofia Diaz-Moreno,^a Diego Gianolio,^a Christopher Hardacre,^b Shusaku Hayama,^a John D. Holbrey,^{b*} Rafin Ramli,^b Kenneth R. Seddon,^b Geetha Srinivasan^b and Małgorzata Swadźba-Kwaśny^b

^{*a*} The Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, OX11 0DE.

^b School of Chemistry and Chemical Engineering, Queen's University Belfast BT9 5AG, Northern Ireland. Tel: +44 (0) 28 9097 4836; E-mail: j.holbrey@qub.ac.uk

Electronic Supplemental Data

EXAFS of mercury standards, MCA fluorescence data capture times, XANES and IPD data from Hg captured by the supported ionic liquid

Figure S1: k^3 -weighted mercury EXAFS *pseudo*-radial distribution functions (*left*) and IPD shown from the first derivative of the EXAFS L₃-edge jump (*right*) for the standards Hg₂Cl₂, HgCl₂, HgO, and [HgCl₃]⁻ from [omim]Cl/HgCl₂ X=0.50. Data collected on beamline I20.

Table S1: IPD values for the mercury standards and chloromercurate(II) ionic liquids.

Standard	IPD /eV
Hg(0)	0
HgO	12.9
HgCl ₂	8.5
Hg_2Cl_2	8.3
$[\text{omim}]\text{Cl/HgCl}_2 (\chi_{\text{HgCl}_2} = 0.33)$	4.8
$[\text{omim}]\text{Cl/HgCl}_2 (\chi_{\text{HgCl}_2} = 0.50)$	8.8

Table S2: Times of XAS fluorescence data collection at each position in the bed. Averaged times from each cycle of data collection are used for reference in the manuscript.

	Cycle1		Cycle 2		Cycle 3	
Position	Time /h	Data set #	Time /h	Data set#	Time /h	Data set#
1	02:26	198716	05:27	198776	08:28	198836
2	02:43	198722	05:45	198782	08:46	198842
3	03:01	198728	06:02	198788	09:04	198848
4	03:19	198734	06:20	198794	09:22	198854
5	03:37	198740	06:38	198800	09:39	198860
Average	03:01		06:02		09:03	
Stdev	00:28		00:27		00:28	
	Cycle 4		Cycle 5		Cycle 6	
Position	Cycle 4 Time /h	Data set #	Cycle 5 Time /h	Data set #	Cycle 6 Time /h	Data set #
Position 1	Cycle 4 Time /h 11:29	Data set # 198896	Cycle 5 Time /h 14:30	Data set # 198956	Cycle 6 Time /h 17:31	Data set # 199017
Position 1 2	Cycle 4 Time /h 11:29 11:47	Data set # 198896 198902	Cycle 5 Time /h 14:30 14:48	Data set # 198956 198962	Cycle 6 Time /h 17:31 17:49	Data set # 199017 199023
Position 1 2 3	Cycle 4 Time /h 11:29 11:47 12:05	Data set # 198896 198902 198908	Cycle 5 Time /h 14:30 14:48 15:06	Data set # 198956 198962 198968	Cycle 6 Time /h 17:31 17:49 18:07	Data set # 199017 199023 199029
Position 1 2 3 4	Cycle 4 Time /h 11:29 11:47 12:05 12:23	Data set # 198896 198902 198908 198914	Cycle 5 Time /h 14:30 14:48 15:06 15:24	Data set # 198956 198962 198968 198974	Cycle 6 Time /h 17:31 17:49 18:07 18:25	Data set # 199017 199023 199029 199035
Position 1 2 3 4 5	Cycle 4 Time /h 11:29 11:47 12:05 12:23 12:41	Data set # 198896 198902 198908 198914 198920	Cycle 5 Time /h 14:30 14:48 15:06 15:24 15:41	Data set # 198956 198962 198968 198974 198980	Cycle 6 Time /h 17:31 17:49 18:07 18:25 18:42	Data set # 199017 199023 199029 199035 199041
Position 1 2 3 4 5 Average	Cycle 4 Time /h 11:29 11:47 12:05 12:23 12:41 12:05	Data set # 198896 198902 198908 198914 198920	Cycle 5 Time /h 14:30 14:48 15:06 15:24 15:41 15:06	Data set # 198956 198962 198968 198974 198980	Cycle 6 Time /h 17:31 17:49 18:07 18:25 18:42 18:07	Data set # 199017 199023 199029 199035 199041

Figure S2: Hg L_3 -edge XANES and first derivative data for adsorbed mercury on the supported ionic liquid bed taken after 3 h from the start of the experiment at positions 1 (black), 2 (red), 3 (green) and 4 (blue) along the bed. No mercury L_3 -edge jump could be detected at position 5.

Figure S3: Change in the inflection point difference spectra for the Hg L_3 XANES data from position 1 (front edge of the adsorbant bed) through the experiment. Data collected on beamline B18.

Table S3: Change in the inflection point difference in the Hg L_3 XANES data from position 1 (front edge of the adsorbant bed) through the experiment. Throughout the experiment, the IPD value is 8.45 eV (stdev 0.19), in the range of both Hg(II)-Cl and Hg(I)-Cl compounds.

Hg(0) exposure time/ hour	Inflection point difference (IPD)/ eV
2.5	8.2
5.5	8.3
8.5	8.7
11.5	8.4
14.5	8.6
17.5	8.5