Supporting Information

Competing Reaction Pathways of 3,3,3-Trifluoropropene at Rhodium Hydrido, Silyl and Germyl Complexes: C–F Bond Activation versus Hydrogermylation

Theresia Ahrens, Michael Teltewskoi, Mike Ahrens, Thomas Braun*, and Reik Laubenstein †Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, D-12489 Berlin, Germany. E-mail: thomas.braun@chemie.hu-berlin.de

The calculations were run using the Gaussian 09 (Revision D.01) program package¹ and the B3LYP functional. Plausible ligand arrangements for [Rh{Si(OEt)₃}(CH₂CHCF₃)(PEt₃)₂] (**2**) and *fac*-[Rh(H)(CH₂CHCF₃)(PEt₃)₃] (**5**) were optimized and the depicted structures turned out to be the minima. The cc-pVTZ basis sets were employed for all rhodium- and silicon-bound atoms (cc-pVDZ for all other carbon and hydrogen atoms). Rhodium was described on using RECPs with the associated cc-pVTZ-PP basis set.² Frequency calculations were run for all stationary points to identify them as minima (no negative eigenvalues). Energies were corrected for zero-point energy.

Figure 1. DFT-optimized structures of $[Rh(CH_2CHCF_3){Si(OEt)_3}(PEt_3)_2]$ (2) and fac- $[Rh(H)(CH_2CHCF_3)(PEt_3)_3]$ (5) as well as their energies. The ethyl groups of the phosphine ligands as well as of the silyl ligand have been omitted for clarity.

Opti	mized car	tesian coo	ordinates for	complex	Р	-1.86629	0.51098	1.00029
[Rh(0	CH₂CHCF ₃){Si	(OEt) ₃ }(PEt ₃);	2] (2a), ener	rgies are	Р	1.44120	1.92676	-0.11114
corre	ected for zer	o-point energ	gy and given in H	artree:	С	-0.07347	-3.78587	0.00423
Ener	gy: -2436.70	7295			С	1.54742	-2.11673	2.88969
					С	3.78269	-2.00253	0.12903
Rh	-0.15336	0.28359	-0.68161		С	0.20652	-5.07533	-0.75249
Si	1.10574	-1.29036	0.32859		С	0.89549	-2.11109	4.26359
0	0.74254	-1.37374	1.96924		С	4.31061	-2.17084	-1.28902
0	2.74717	-1.01630	0.18935		С	-2.78490	-1.08755	1.27005
0	0.95665	-2.84342	-0.27271		С	-3.75837	-1.27701	2.44061

С	-1.46844	1.12617	2.71559	
С	-2.55165	1.77431	3.58743	
С	-3.10435	1.74802	0.33836	
С	-4.59185	1.63720	0.69977	
Ċ	3.01768	2.01148	-1.09009	
c	2 02485	2 06873	1 66524	
c	2.02403	2.00075	2 50610	
c	2.03423	2.22425	-2.59010	
C	3.44910	2.55223	1.96210	
C	0.65931	3.58942	-0.43268	
С	1.49648	4.85232	-0.19667	
Н	-1.05624	-3.37841	-0.29512	
Н	-0.12489	-3.98382	1.09143	
Н	0.23672	-4.88995	-1.83779	
Н	-0.58042	-5.81982	-0.54815	
Н	1.17628	-5.50263	-0.45122	
Н	1.67235	-3.15758	2.53561	
н	2.55726	-1.67009	2.94567	
н	-0 10845	-2 56340	4 22402	
н	0 79/31	-1 08275	1 64614	
 Ц	1 50504	2.69596	4.09015	
	1.30304	-2.06560	4.56015	
	5.41092	-2.97102	0.50725	
H	4.59377	-1.66462	0.79903	
Н	3.51666	-2.53612	-1.95872	
Н	5.13870	-2.89969	-1.30351	
Н	4.68847	-1.21501	-1.68656	
Н	-1.97882	-1.83172	1.35578	
Н	-3.28133	-1.29381	0.30846	
Н	-3.25562	-1.15960	3.41310	
н	-4.17376	-2.29863	2.41458	
Н	-4.60678	-0.57907	2.41020	
н	-0.64731	1.84436	2.57376	
н	-1.00979	0.26301	3,22360	
н	-2.96742	2.67996	3.11820	
н	-2 12105	2.07336	4 55550	
н	-3 38812	1 09514	3 801/6	
ц	-3 00438	1 70163	-0 75655	
 Ц	2 70001	2 72694	0.73033	
н Ц	-2.70331 5.01422	0.67770	0.03230	
	-5.01452	0.07770	0.30437	
	-5.10014	2.45502	0.19500	
	-4.77697	1./3358	1.77941	
н	3.51598	1.04967	-0.90006	
Н	3.66018	2.80336	-0.67509	
Н	2.21553	1.43362	-3.04241	
Н	3.81286	2.21290	-3.10310	
Н	2.36137	3.19320	-2.82564	
Н	1.29327	2.72981	2.16036	
Н	1.87434	1.07184	2.10335	
Н	3.64536	3.56341	1.57337	
Н	4.20351	1.87414	1.53563	
н	3.61465	2.58215	3.05212	
н	0.29717	3.56008	-1.47398	
н	-0 24704	3 61300	0 19483	
н	2 /0010	1 87359	-0.82570	
 Ц	1 917/5	4.07555	0.02370	
	0.00002	4.94041 F 7F404	0.85510	
	0.90903	5.75404	-0.43617	
C C	0.312/8	-0.48101	-2.59552	
C	-0.9/141	-0.98996	-2.18296	
C	-2.19197	-0.47978	-2.85076	
Н	-1.06813	-2.04330	-1.95884	
Н	1.13596	-1.17766	-2.68364	
Н	0.33307	0.29605	-3.35325	
F	-2.18320	0.88134	-2.99640	
F	-3.33522	-0.77790	-2.17261	
F	-2.38421	-0.97330	-4.10422	

Optimized	cartesian	coordir	nates	for	com	olex
[Rh(CH ₂ CHCF	3){Si(OEt)3}(P	Et ₃) ₂]	(2b),	energi	ies	are
corrected for	zero-point e	nergy ar	nd given	in Har	tree:	
Energy: -2436	6.699711					

Rh	-0.05004	0.24180	-0.88312
Si	0.41784	-1.14262	0.84576
0	-0.86855	-1.19813	1.92564
0	1.70832	-0.63786	1,76654
0	0 82242	-2 71554	0.48596
Б	0.02242	0.02964	0.40000
P	-2.37743	0.03804	-0.61881
P	0.54230	2.1/8/0	0.40663
C	0.01508	-3./8321	0.01574
С	-0.75220	-1.87271	3.18479
С	3.04161	-1.15924	1.78582
С	0.85450	-5.04961	-0.06662
С	-2.07800	-1.80172	3.92593
С	3.68156	-0.84619	3.12950
C	-3.05255	-1.69220	-0.74982
c	-/ 5215/	-2 01/21	-0 44764
c	2 28440	0.91546	0.91216
c	-3.20440	1 25950	0.81310
C	-4.74718	1.25850	0.07088
C	-3.00996	0.96363	-2.12094
С	-4.34443	0.57925	-2.77476
С	2.31998	2.72711	0.39065
С	0.06619	2.25088	2.21820
С	2.82959	3.21145	-0.97182
С	0.91714	3.07065	3.19552
С	-0.34718	3.65917	-0.30784
Ċ	-0 12398	5 04060	0 32012
н	-0.39900	-3 5/028	-0 97939
 Ц	0.935500	2 02062	0.57555
	-0.84354	-3.93962	0.69744
H	1.70240	-4.90510	-0.75399
н	0.24490	-5.89210	-0.43305
н	1.25723	-5.31640	0.92356
Н	-0.46088	-2.92703	3.02357
н	0.04899	-1.40331	3.78245
н	-2.88273	-2.27845	3.34288
н	-2.36570	-0.75533	4.11753
н	-2.00362	-2.32027	4.89600
н	3,62483	-0.70316	0.96813
н	3 01883	-2 24627	1 60682
 Ц	2 70020	0.24004	2 21002
	3.70920	1 22506	3.31003
H	4./16/5	-1.22506	3.15572
н	3.12046	-1.31469	3.95434
н	-2.41/1/	-2.27089	-0.06473
н	-2.77777	-2.02619	-1.76458
Н	-4.78074	-1.77995	0.59629
н	-4.70063	-3.09346	-0.58851
н	-5.22434	-1.47777	-1.10046
н	-2.67301	1.69045	1.08297
н	-3.15434	0.10764	1.64638
н	-4.87334	2.02241	-0.10655
н	-5 09070	1 70960	1 62315
н	-5 42649	0 42653	0.44622
	-3.42049	0.42033	0.44022
	-2.20957	0.87019	-2.0/5/5
н	-3.01920	2.02828	-1.83010
Н	-4.34059	-0.46706	-3.11688
Н	-4.52384	1.21006	-3.66130
Н	-5.20033	0.71037	-2.09731
Н	2.90199	1.85434	0.72328
Н	2.46747	3.51772	1.14189
Н	2.66688	2.46248	-1.75840
н	3.91327	3.40412	-0.92432
н	2.34373	4.15040	-1.28229

н	-0.97657	2.61180	2.22767
Н	0.02718	1.20864	2.56064
Н	1.00265	4.13016	2.90950
н	1.93540	2.66205	3.28332
Н	0.46632	3.03685	4.20154
н	-0.08528	3.68174	-1.37900
Н	-1.41915	3.40266	-0.27203
Н	0.93688	5.33528	0.30945
н	-0.47012	5.07489	1.36453
Н	-0.68387	5.81127	-0.23548
С	1.44559	-0.16123	-2.35743
С	0.31967	-1.04564	-2.52252
С	2.81901	-0.69717	-2.16846
н	0.46472	-2.09871	-2.32439
Н	-0.35874	-0.86172	-3.35144
Н	1.49903	0.69930	-3.02067
F	3.45850	-0.88316	-3.36360
F	2.86554	-1.88858	-1.53849
F	3.63511	0.14166	-1.46792

Optimized cartesian coordinates for complex fac-[Rh(H)(CH₂=CHCF₃)(PEt₃)₃] (**5a**) energies are corrected for zero-point energy and given in Hartree: Energy -2263.279185

Rh	0.02141	0.11017	-0.48062
Р	-2.03193	-1.09312	-0.47348
Р	1.53403	-1.01562	0.99168
Р	-0.48057	2.11380	0.85867
С	-0.41168	2.05505	2.72634
С	0.63591	3.60641	0.64434
С	-1.42190	1.14198	3.42469
С	0.47144	4.44113	-0.63285
С	-2.16822	2.85026	0.55824
С	-2.58247	4.10114	1.34241
С	0.89538	-1.73471	2.60305
С	1.60992	-2.89439	3.31071
С	2.31979	-2.46883	0.11926
С	3.69934	-2.99934	0.52782
С	2.96829	0.06922	1.50478
С	3.85263	-0.27820	2.70976
С	-3.43489	-0.71823	0.71508
С	-4.49032	-1.77635	1.06560
С	-1.74596	-2.93139	-0.26233
С	-2.67308	-3.97098	-0.90521
С	-2.83401	-0.91002	-2.15119
С	-4.29595	-1.30370	-2.40082
Н	-1.25976	1.14981	4.51518
Н	-1.33644	0.10034	3.08370
Н	-2.45845	1.47083	3.24777
Н	-0.51935	3.08450	3.10658
Н	0.61610	1.74652	2.97998
Н	1.66607	3.21869	0.70843
Н	0.49786	4.25810	1.52311
Н	0.64172	3.85636	-1.54674
Н	1.19576	5.27224	-0.63401
Н	-0.53276	4.88664	-0.70578
Н	-2.21456	3.03860	-0.52686
Н	-2.88476	2.03556	0.74140
Н	-1.89080	4.94297	1.18368
Н	-2.63037	3.91259	2.42652
Н	-3.58393	4.43855	1.02777
Н	-0.13796	-2.04068	2.37276
Н	0.79682	-0.87573	3.28855
н	2.35334	-2.15879	-0.93388

Н	1.56550	-3.27392	0.16595
Н	4.47554	-2.22637	0.41890
Н	3.98589	-3.83437	-0.13356
Н	3.73329	-3.37342	1.56089
Н	1.66348	-3.78951	2.67183
Н	1.05520	-3.18015	4.22086
Н	2.63389	-2.63885	3.61748
Н	2.52231	1.06413	1.66179
Н	3.57529	0.17201	0.59115
Н	3.27389	-0.32437	3.64611
Н	4.62338	0.49941	2.84604
Н	4.37546	-1.23764	2.59030
Н	-3.92764	0.18135	0.30743
Н	-2.94248	-0.39050	1.64178
Н	-5.07226	-2.10283	0.19227
Н	-5.20330	-1.36787	1.80207
Н	-4.03557	-2.67021	1.52035
Н	-0.72457	-3.08269	-0.64028
Н	-1.68730	-3.09484	0.82825
Н	-2.69046	-3.87226	-2.00156
Н	-3.70863	-3.90610	-0.54344
Н	-2.30843	-4.98743	-0.67955
Н	-2.16026	-1.43697	-2.84779
Н	-2.70328	0.15767	-2.38583
Н	-4.49029	-2.37311	-2.23855
Н	-4.56934	-1.07625	-3.44512
Н	-4.98790	-0.73501	-1.75947
Н	0.30628	-1.10949	-1.41721
С	1.30002	1.17379	-1.83648
С	-0.05595	1.21437	-2.31156
С	2.34712	0.47889	-2.63441
Н	1.73745	2.07890	-1.43373
Н	-0.30846	0.61759	-3.17823
Н	-0.58919	2.15659	-2.28168
F	2.88850	1.30437	-3.58163
F	1.92790	-0.61532	-3.30554
F	3.41305	0.07864	-1.87776

Optimized cartesian coordinates for complex fac-[Rh(H)(CH₂=CHCF₃)(PEt₃)₃] (**5b**) energies are corrected for zero-point energy and given in Hartree: Energy -2263.268359

Rh	0.03375	-0.06438	-0.57740
Р	2.40944	0.28892	-0.56657
Р	-1.08574	1.74918	0.52070
Р	-0.24723	-1.79799	1.16261
С	-0.18346	-1.18591	2.92934
С	-1.79037	-2.85126	1.33793
С	1.10418	-0.48122	3.36132
С	-1.91355	-4.06220	0.40365
С	1.07440	-3.11516	1.14651
С	1.12955	-4.11277	2.30990
С	-0.21494	2.68785	1.89273
С	-0.54554	4.15297	2.20914
С	-1.51315	3.05915	-0.74373
С	-2.67328	4.03671	-0.52114
С	-2.73808	1.27735	1.26308
С	-3.40000	2.14934	2.33773
С	3.64086	-0.58993	0.54698
С	5.01974	0.01708	0.84098
С	2.82864	2.10037	-0.32735
С	4.01599	2.75145	-1.04858
С	3.03688	-0.13062	-2.27749
С	4.53022	-0.29400	-2.58812

Н	0.99251	-0.04745	4.36884
Н	1.36841	0.33168	2.66920
Н	1.95420	-1.18122	3.40334
Н	-0.38975	-2.03354	3.60311
Н	-1.04035	-0.50025	3.03410
Н	-2.64189	-2.17404	1.17979
Н	-1.84716	-3.19339	2.38519
Н	-1.80951	-3.78641	-0.65390
Н	-2.90633	-4.52675	0.51981
Н	-1.16372	-4.83563	0.63049
Н	0.94117	-3.64357	0.18835
Н	2.03432	-2.59099	1.05665
Н	0.18022	-4.65284	2.44693
Н	1.36915	-3.61898	3.26480
Н	1.91211	-4.86882	2.13107
Н	0.85122	2.61124	1.63489
Н	-0.33857	2.06752	2.79630
Н	-1.69839	2.48487	-1.66292
Н	-0.57070	3.60525	-0.92479
Н	-3.63093	3.50581	-0.40737
Н	-2.77627	4.69838	-1.39768
Н	-2.53439	4.67872	0.35990
Н	-0.37896	4.80448	1.33711
Н	0.11024	4.52063	3.01692
Н	-1.58405	4.29403	2.54054
Н	-2.59692	0.26194	1.66360
Н	-3.40870	1.14736	0.39927
Н	-2.76945	2.24572	3.23599
Н	-4.35095	1.69167	2.65880
Н	-3.62977	3.16276	1.97968
Н	3.75748	-1.59652	0.11007
Н	3.11382	-0.73912	1.49977
Н	5.62981	0.14469	-0.06380
Н	5.58142	-0.63966	1.52707
Н	4.93725	0.99898	1.33266
Н	1.90760	2.63040	-0.60949

н	2.92987	2.23653	0.76327
Н	3.91648	2.67569	-2.14243
Н	4.98199	2.31079	-0.76538
Н	4.05978	3.82597	-0.80227
Н	2.57774	0.62128	-2.94095
Н	2.52007	-1.07247	-2.51690
Н	5.11068	0.62561	-2.42877
Н	4.65822	-0.58219	-3.64534
Н	4.98969	-1.09203	-1.98391
Н	0.34870	1.03762	-1.65095
С	-1.34519	-0.53796	-2.17930
С	-0.26664	-1.47602	-2.18581
С	-2.77707	-0.91258	-2.07865
Н	0.46300	-1.40394	-2.98252
Н	-0.46044	-2.49668	-1.88135
Н	-1.28414	0.25555	-2.91497
F	-3.25157	-1.44783	-3.24381
F	-3.57007	0.17409	-1.84691
F	-3.08577	-1.81505	-1.12093

Optimized cartesian coordinates for CF3CH=CH2 energies are corrected for zero-point energy and given in Hartree: Energy: -415.742799

С	-2.11260	0.04976	0.00000
С	-0.98645	-0.64262	0.00000
Н	-3.07081	-0.45022	0.00000
Н	-2.11395	1.13062	-0.00000
Н	-0.96968	-1.72455	0.00000
С	0.37189	-0.01792	0.00000
F	0.33725	1.32631	-0.00000
F	1.08234	-0.40156	-1.08368
F	1.08234	-0.40155	1.08368

Figure 2. ¹⁹F, ¹³C HMBC NMR spectrum (282.4 MHz/75.4 MHz, [D₆]benzene optimized on long-range coupling,) of 1,1,1-trifluoropropane-3-triphenylgermane **8**.

1. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F.

Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

2. K. A. Peterson, D. Figgen, M. Dolg and H. Stoll, J. Chem. Phys., 2007, **126**, 124101.