Supplementary information (ESI)

A facile room temperature chemical transformation approach for binder-free thin film formation of Ag₂Te and lithiation/delithiation chemistry of the film

Eun-Kyung Kim^a, Dasom Park^b, Nabeen K. Shrestha^{a,*}, Jinho Chang^b, Cheol-Woo Yi^b, Sung-Hwan Han^a,*

^aInstitute of Materials Design, Department of Chemistry, Hanyang University, Seongdong-gu, 133791 Seoul, Republic of Korea.

E-mail: nabeenkshrestha@hotmail.com (N.K. Shrestha) ; shhan@hanyang.ac.kr (S.-H. Han). ^bDepartment of Chemistry, Sungshin W. University, 55 Dobong-ro, 76ga-gil, Gangbuk-gu, Seoul 142-732, Republic of Korea.

Fig. S1. XPS spectra of Ag/Ag_xO film. (a) Survey spectrum, (b) Ag 3d core level spectrum, and (c) O 1s core level spectrum.

Fig. S2. Schematic diagram showing the surface oxidation of Ag particles followed by chemical transformation into Ag_2Te in presence of aqueous Te-precursor solution at room temperature.

Fig. S3. XPS survey spectrum of chemically transformed Ag_2Te film. The Na signal at 1071.12 eV is attributed to residual NaOH.

Fig. S4. (a) UV-vis absorption spectrum of Ag_2Te film and inset shows the Tauc plot for estimation of optical gap. (b) UPS spectrum for estimation of valance band edge position of Ag_2Te film. (c) Various parameters obtained from Hall measurement of the Ag_2Te film.

Fig. S5 Charge–discharge curves of the $Li/LiPF6/Ag_2Te$ battery at various current densities.