Supporting Information for

Hydroamination of Carbodiimides, Isocyanates, and Isothiocyanates by Bis(phosphinoselenoic amide) Supported Titanium(IV) complex

Jayeeta Bhattacharjee, Suman Das, Ravi K. Kottalanka and Tarun K. Panda*

Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi – 502 285, Sangareddy, Telangana, India.

Table of Contents

- 1. Crystallographic Table TS1
- 2. Figure 1: ¹H NMR spectra of complex **1**.
- 3. Figure 2: ³¹P NMR spectra of complex 1.
- 4. Figure 3: ${}^{13}C$ NMR spectra of complex 1.
- 5. Figure 4: ¹H NMR spectra of 1,1 dimethyl-3-phenyl urea (A)
- 6. Figure 5: ¹³C NMR spectra of 1,1 dimethyl-3-phenyl urea (A)
- 7. Figure 8: ¹H NMR spectra of 3-(4-chlorophenyl)-1,1-dimethylurea (**B**)
- 8. Figure 9: ¹³C NMR spectra of 3-(4-chlorophenyl)-1,1-dimethylurea (**B**)
- 9. Figure 6: ¹H NMR spectra of 1,1 dimethyl-3-phenyl thiourea (C)
- 10. Figure 7: ¹³C NMR spectra of 1,1 dimethyl-3-phenyl thiourea (C)
- 11. Spectroscopic data of urea derivatives.
- 12. Spectroscopic data of thiourea derivatives.
- 13. Spectroscopic data of guanidine derivatives.
- 14. General procedure for kinetic NMR Experiments.

Compound	1	В
CCDC No.	1470715	1495777
Empirical formula	$C_{30}H_{36}N_4P_2Se_2Ti$	$C_9 H_{11}CIN_2O$
Formula weight	720.39	198.65
<i>T</i> (K)	150	150
λ (Å)	1.54184	1.54184
Crystal system	Monoclinic	Orthorhombic
Space group	Рс	P b c a
a (Å)	8.9540(3)	9.1347(3)
b (Å)	14.1215(10)	11.3629(4)
c (Å)	14.6424(12)	18.5528(6)
α (°)	90	90
β (°)	120	90
γ (°)	90	90
V (Å ³)	1594.94(18)	1925.72(11)
Ζ	2	8
$D_{\text{calc}} \text{ g cm}^{-3}$	1.500	1.370
$\mu (\mathrm{mm}^{-1})$	6.028	3.201
F(000)	728	832.0
Theta range for data collection	3.13 to 70.57 deg.	3.8870 to 71.4541 deg
	-10<=h<=10	-6<=h<=11
Limiting indices	-12<=k<=16	-12<=k<=13
	-17<=l<=17	-22<=l<=15
Reflections collected / unique	6223/4114	3946/1833
Keneetions concerca / unique	[R(int) = 0.0239]	[R(int) = 0.0259]
Completeness to theta = 71.25	99.3 %	99.9%
Absorption correction	Multi-scan	Multi-scan
Max. and min. transmission	1.000 and 0.70975	1.00000 and 0.59522
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	4114 / 2 / 357	1833/0/120
Goodness-of-fit on F ²	1.071	1.049
	R1 = 0.0364,	R1 = 0.0480,
Final K indices $[1>2\sigma(1)]$	wR2 = 0.0974	wR2 = 0.1203
P indiana (all data)	R1 = 0.0369,	R1 = 0.0584,
	wR2 = 0.0981	wR2 = 0.1291
Absolute structure parameter	0.012	n/a

Table TS1. Crystallographic data and refinement parameters of titanium (IV) complex 1 and 3-(4-chlorophenyl)-1,1-dimethylurea (B).

Figure S2. ³¹P NMR spectra of complex 1.

Figure S4. ¹H NMR spectra of compound A.

Figure S5. ¹³C NMR spectra of compound A.

Figure S6. ¹H NMR spectra of compound **B**.

Figure S7. ¹³C NMR spectra of compound **B**.

Figure S8. ¹H NMR spectra of compound C.

Figure S9. ¹³C NMR spectra of compound C.

General Procedure for the Catalytic Addition of Amines with RNCO and RNCS.

A solution of primary or secondary amine (0.276 mmol) in toluene (1.0 mL) was added drop wise into the reaction mixture of RNCO (0.276 mmol) or RNCS (0.276 mmol) and titanium complex **1** (0.0138 mmol) to a 25 mL dry Schlenk flask inside the glove box. The dark red reaction mixture was stirred for 1 h at room temperature. Solvent was evaporated under vacuo, White solid compound obtained in each case. The conversion of amines was calculated from isolated pure products. The products were identified by ¹H NMR spectroscopy and MS analysis; the values were compared with previous literature.

After isolation, due to small amount of intractable HNMe₂ we obtained singlet signals from 3 - 4 ppm region in NMR spectra.

Insertion of diethylamine into 4-chlorophenylisocyanate

 $CI-Ph(\underline{N} = N = 1$

The insertion of diethylamine (20 mg, 0.276 mmol) into 4-chlorophenylisocyanate (40 mg, 0.276 mmol) was carried out following the general procedure described above. 1,1-diethyl-3-(4-chlorophenyl)urea (2i) was obtained in 99 % yield after a reaction time of 1 hours.

Yield: 59.6 mg, 99%. ¹H NMR (400 MHz, CDCl₃): 7.35-7.33 (m, 2H, Ar), 7.46-7.24 (m, 2H, Ar), 6.25 (s, 1H, PhN*H*), 3.36 (q, 4H, ${}^{3}J_{HH} = 7.20$ Hz, C*H*₂), 1.22 (t, 6H, ${}^{3}J_{HH} = 7.20$ Hz, C*H*₃) ppm. ${}^{13}C{}^{1}H$ NMR (100, MHz, CDCl₃) δ 154.3 (CO), 137.8 (Ar), 128.7 (Ar), 127.7 (Ar), 120.8 (Ar), 41.6 (CH₂), 13.9 (CH₃) ppm. MS: m/z 244.0818 (M⁺).

Insertion of Pyrrolidine into 4-chlorophenylisocyanate

The insertion of pyrrolidine (20 mg, 0.276 mmol) into 4-chlorophenylisocyanate (40 mg, 0.276 mmol) was carried out following the general procedure described above. N-(4-chlorophenyl)pyrrolidine-1-carboxamide (**2j**) was obtained in 99 % yield after a reaction time of 1 hour.

Yield: 58.3 mg, 99%. ¹H NMR (400 MHz, CDCl₃): δ 7.98-7.42 (d, 2H, Ar), 7.36-7.27 (t, 2H, Hz, Ar), 6.25 (s, 1H, PhN*H*), 3.42 (t, 4H, ³*J*_{HH} = 6.80 Hz, *CH*₂), 1.94 (q, 4H, ³*J*_{HH} = 6.80 Hz, *CH*₂) ppm. ¹³C{¹H} NMR (100, MHz, CDCl₃) δ 154.0 (*C*O), 139 (Ar), 128 (Ar), 122 (Ar), 119 (Ar), 45 (*C*H₂), 25 (*C*H₂) ppm. MS: m/z 113.07 (M⁺).

Insertion of Mesityl amine into 4-chlorophenylisocyanate

The insertion of mesityl amine (36 mg, 0.276 mmol) into 4-chlorophenylisocyanate (40 mg, 0.276 mmol) was carried out following the general procedure described above. 1-(4-chlorophenyl)-3-mesitylurea ($2\mathbf{k}$) was obtained in 99 % yield after a reaction time of 1 hour.

Yield: 75 mg, 99%.¹H NMR (400 MHz, CDCl₃): δ 7.60 (br, 2H, PhN*H*), 7.44-7.40 (m, 3H, Ar), 7.30-7.26 (m, 2H, Ar), 7.19-7.16 (m, 2H, Ar) 6.04 (br, 2H, PhN*H*), 1.6 (s, 9H, C*H*₃) ppm. ¹³C{¹H} NMR (100, MHz, CDCl₃): δ 154 (*C*O), 131.8 (Ar), 129.7 (Ar), 128.9 (Ar), 128.5 (Ar), 128.4 (Ar), 121 (Ar) 36.5 (*C*H₃), 28.5(*C*H₃) ppm. MS: m/z 288.10 (M⁺).

Insertion of pyrrolidine into *p*-tolylisocyanate

The insertion of pyrrolidine (20 mg, 0.276 mmol) into *p*-tolylisocyanate (34 mg, 0.276 mmol) was carried out following the general procedure described above. N-(p-tolyl)pyrrolidine-1-carboxamide (**2l**) was obtained in 99 % yield after a reaction time of 1 hour.

Yield: 56 mg, 99%. ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.28 (m, 2H, Ar), 7.26-7.07 (m, 2H, Ar), 6.08 (s, 1H, PhN*H*), 3.45 (t, 4H, ³*J*_{HH} = 6.80 Hz, *CH*₂), 2.29 (s, 3H, *CH*₃-OTs), 1.96 (q, 4H, ³*J*_{HH} = 6.80 Hz, *CH*₂), ppm. ¹³C{¹H} NMR (100, MHz, CDCl₃) δ 154.0 (*CO*), 138 (Ar), 139.3 (Ar), 128.5 (Ar), 119.6 (Ar), 45.7 (*C*H₂), 25.8 (*C*H₂), 29.7 (*C*H₂) ppm. MS: m/z 204.1266 (M⁺).

Insertion of tert-butylamine into phenylisothiocyanate

The insertion of *tert*-butylamine (19 mg, 0.276 mmol) into phenylisothiocyanate (36 mg, 0.276 mmol) was carried out following the general procedure described above. 1-(tert-butyl)-3-phenylthiourea (3a) was obtained in 99 % yield after a reaction time of 1 hour.

Yield: 54.4 mg, 99%. ¹H NMR (400 MHz, CDCl₃): δ 7.54 (s, 1H, PhN*H*), 7.46-7.44 (m, 2H, Ar), 7.29-7.25 (m, 1H, Ar) 7.19-7.17 (m, 2H, Ar), 6.04 (s, 1H, *t*BuN*H*), 1.5 (s, 9H, C*H*₃) ppm. ¹³C{¹H} NMR (100, MHz, CDCl₃): δ 179.3 (*C*S), 136 (Ar), 132 (Ar), 130 (Ar), 124 (Ar), 54 (*C*(CH₃)₃), 28.9 (*C*H₃) ppm. MS: m/z 322.42 (M⁺).

Insertion of pyrrolidine into phenylisothiocyanate

The insertion of pyrrolidine (20mg, 0.276 mmol) into phenylisothiocyanate (36 mg, 0.276 mmol) was carried out following the general procedure described above. N-phenylpyrrolidine-1-carbothioamide (**3b**) was obtained in 99 % yield after a reaction time of 1 hour.

Yield: 54.87 mg, 99%. ¹HNMR (400 MHz, CDCl₃): δ 7.42-7.40 (m, 2H, Ar), 7.28-7.24 (m, 2H, Ar), 7.02-7.00 (m, 1H, Ar*H*), 6.26 (s, 1H, PhN*H*), 3.43 (t, 4H, ³*J*_{HH} = 6.80 Hz, *CH*₂), 1.93 (q, 4H,

 ${}^{3}J_{\text{HH}} = 6.80 \text{ Hz}, CH_{2}$ ppm. ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (100, MHz, CDCl₃) δ 178.45.0 (*C*S), 139 (Ar), 128.7 (Ar), 125.8 (Ar), 125.5 (Ar), 45 (*C*H₂), 25 (*C*H₂) ppm. MS: m/z 206.09 (M⁺).

Insertion of N,N'-ⁱPr₂-ethylamine into phenylisothiocyanate

The insertion of N,N'- iPr_2 -ethylamine (30 mg, 0.276 mmol) into phenylisothiocyanate (36 mg, 0.276 mmol) was carried out following the general procedure described above. 1,1-diisopropyl-3-phenylthiourea (**3c**) was obtained in 99 % yield after a reaction time of 1 hour.

Yield: 63 mg, 99%. ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.35 (m, 2H, Ar), 7.29-7.24 (m, 3H, Ar), 6.19 (s, 1H, PhN*H*), 3.99 (sept, 2H, ³*J*_{HH} = 6.40 Hz, *CH*), 1.33(d, 12H, ³*J*_{HH} = 6.40 Hz, *CH*₃) ppm. ¹³C{¹H} NMR (100, MHz, CDCl₃): δ 154.7 (*C*S), 139.3 (Ar), 128.8 (Ar), 122.6 (Ar), 119.7 (Ar), 45.4 (*C*H), 21.5 (*C*H₃) ppm. MS: m/z 236.13 (M⁺).

Insertion of aniline into phenylisothiocyanate

$$\begin{array}{c} S\\ Ph \\ N \\ H \\ H \\ H \end{array} \begin{array}{c} \\ Ph \\ Ph \\ Ph \\ H \\ H \end{array}$$

The insertion of aniline (24 mg, 0.276 mmol) into phenylisothiocyanate (36 mg, 0.276 mmol) was carried out following the general procedure described above. 1,3-diphenylthiourea (**3d**) was obtained in 99 % yield after a reaction time of 1 hours.

Yield: 61 mg, 99%. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (br, 2H, ArN*H*), 7.42-7.39 (m, 8H, Ar), 7.31-7.29 (m, 2H, Ar) ppm. ¹³C{¹H} NMR (100, MHz, CDCl₃): δ 178 (*C*S),139 (Ar),128 (Ar), 125.7(Ar), 125.5(Ar) ppm. MS: m/z 228.07 (M⁺).

Insertion of mesityl amine into phenylisothiocyanate

Ph N H H H The insertion of mesityl amine (36 mg, 0.276 mmol) into phenylisothiocyanate (36 mg, 0.276 mmol) was carried out following the general procedure described above. 1-mesityl-3-phenylthiourea (**3e**) was obtained in 95 % yield after a reaction time of 1 hour.

Yield: 68 mg, 95%. ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.27 (m, 4H, Ar), 7.05-7.03 (m, 2H, Ar), 7.01 (br, 1H, MesN*H*), 6.97 (br, 1H, PhN*H*), 2.31 (s, 3H, C*H*₃), 2.29 (s, 6H, C*H*₃) ppm. ¹³C{¹H} NMR (100, MHz, CDCl₃): δ 167.9 (CS), 137.0(Ar), 132.0 (Ar), 131.9 (Ar), 129.9 (Ar), 128.9(Ar), 128.7(Ar), 125.3(Ar), 124.5(Ar), 30.9 (CH₃), 21.1(CH₃), 18.1(CH₃) ppm MS: m/z 270.12 (M⁺).

Insertion of 2,6-dimethylaniline into phenylisothiocyanate

The insertion of 2,6-dimethylaniline (32 mg, 0.276 mmol) into phenylisothiocyanate (36 mg, 0.276 mmol) was carried out following the general procedure described above. 1-(2,6-dimethylphenyl)-3-phenylthiourea (**3f**) was obtained in 99 % yield after a reaction time of 1 hours.

Yield: 68 mg, 99%. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (br, 1H, PhN*H*), 7.25-7.18 (m, 4H, Ar), 7.05-6.65 (m, 3H, Ar), 6.39 (br, 1H, ArN*H*), 2.25 (s, 6H, C*H*₃) ppm. ¹³C{¹H} NMR (100, MHz, CDCl₃): δ 179 (CS),138 (Ar),136 (Ar), 133 (Ar), 128 (Ar), 123 (Ar), 120 (Ar), 18 (CH₃) ppm. MS: m/z 256.10 (M⁺).

Insertion of DippNH₂ into phenylisothiocyanate

The insertion of DippNH₂ (46 mg, 0.276 mmol) into phenylisothiocyanate (36 mg, 0.276 mmol) was carried out following the general procedure described above. 1-(2,6-diisopropylphenyl)-3-phenylthiourea (**3g**) was obtained in 99 % yield after a reaction time of 1 hour.

Yield: 83 mg, 99%. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (br, 1H, PhN*H*), 7.51-7.41 (m, 3H, Ar), 7.28-7.21 (m, 5H, Ar), 6.94 (br, 1H, ArN*H*), 3.29 (sept, 2H, C*H*), 1.25 (dd, 12H, C*H*₃) ppm. ¹³C{¹H} NMR (100, MHz, CDCl₃): δ 181.1 (CS), 147.9 (Ar), 130.3 (Ar), 129.8 (Ar), 128.8 (Ar), 126.5 (Ar), 125.5 (Ar), 124.8 (Ar), 28.7 (C*H*), 24.3 (C*H*₃) ppm. MS: m/z 312.17 (M⁺).

Insertion of *p*-nitroaniline into phenylisothiocyanate

The insertion of *p*-nitroaniline (36 mg, 0.276 mmol) into phenylisothiocyanate (36 mg, 0.276 mmol) was carried out following the general procedure described above. 1-(4-nitrophenyl)-3-phenylthiourea (**3i**) was obtained in 75 % yield after a reaction time of 1 hour.

Yield: 55 mg, 75%. ¹H NMR (400 MHz, CDCl₃): δ 8.06 (br, 1H, ArN*H*), 7.34-7.32 (m, 3H, Ar), 7.27-7.22 (m, 4H, Ar), 6.62 (br, 1H, PhN*H*) ppm. ¹³C{¹H} NMR (100, MHz, CDCl₃) δ 182.9 (*C*S), 133.1 (Ar), 132.0 (Ar), 131.9 (Ar), 128.9 (Ar), 128.6 (Ar), 126.7 (Ar), 124.6 (Ar) ppm. MS: m/z 273.06 (M⁺).

Insertion of o-fluoroaniline into phenylisothiocyanate

The insertion of *o*-fluoroaniline (30 mg, 0.276 mmol) into phenylisothiocyanate (36 mg, 0.276 mmol) was carried out following the general procedure described above. 1-(2-fluorophenyl)-3-phenylthiourea (3j) was obtained in 99 % yield after a reaction time of 1 hour.

Yield: 65.5 mg, 99%. ¹H NMR (400 MHz, CDCl₃): δ 8.16 (br, 1H, ArN*H*), 7.96 (br, 1H, PhN*H*), 7.99-7.96 (m, 1H, Ar), 7.45-7.39 (m, 5H, Ar), 7.35-7.26 (m, 3H, Ar) ppm. ¹³C{¹H} NMR (100, MHz, CDCl₃) δ 182.6 (*C*S), 134.2 (Ar), 132.1 (Ar),132 (Ar), 131.9 (Ar), 128.9 (Ar), 128.6 (Ar), 128.5 (Ar), 125.5 (Ar) ppm. MS: m/z 246.06 (M⁺).

Figure S10. ¹H NMR spectra of compound 2i.

Figure S11. ¹³C NMR spectra of compound 2i.

Figure S12. ¹H NMR spectra of compound 2j.

Figure S13. ¹³C NMR spectra of compound 2j.

Figure S14. ¹H NMR spectra of compound 2k.

Figure S16. ¹H NMR spectra of compound 2l.

Figure S17. ¹³C NMR spectra of compound 2l.

Figure S18. ¹H NMR spectra of compound 3a.

Figure S19. ¹³C NMR spectra of compound 3a.

Figure S20. ¹H NMR spectra of compound 3b.

Figure S21. ¹H NMR spectra of compound 3c.

Figure S22. ¹³C NMR spectra of compound 3c.

Figure S23. ¹H NMR spectra of compound 3d.

Figure S24. ¹³C NMR spectra of compound 3d.

Figure S25. ¹H NMR spectra of compound 3e.

Figure S26. ¹³C NMR spectra of compound 3e.

Figure S27. ¹H NMR spectra of compound 3f.

Figure S28. ¹H NMR spectra of compound 3g.

igure S29. ¹³C NMR spectra of compound 3g.

Figure S30. ¹H NMR spectra of compound 3i.

Figure S31. ¹³C NMR spectra of compound 3i.

Figure S32. ¹H NMR spectra of compound 3j.

Figure 555. C NWIK spectra of compound 5j.

General Procedure for the Catalytic Addition of Amines with Carbodiimide.

A solution of primary or secondary amine (0.276 mmol) in toluene (1.0 mL) was added drop wise into the reaction mixure of carbodiimide (0.276 mmol) an $[(NMe_2)_2Ti{Ph_2P(Se)N-CH_2CH_2NPPh_2(Se)}]$ (1) (0.0138 mmol) to a 25 mL dry Schlenk flask inside the glove box. The dark red reaction mixture was stirred for 6 h at 70°C temperature. Solvent was evaporated under vacuo, and a solid residue obtained was obtained, which was washed with *n*-pentane (5 mL). White solid compound obtained in each case. The conversion of amines was calculated from isolated pure products.

Insertion of aniline into carbodiamide

$$Cy \underbrace{NPh}_{H} Cy \underbrace{NPh}_{H} Cy$$

The insertion of aniline (24 mg, 0.276 mmol) into carbodiamide (54 mg, 0.276 mmol) was carried out following the general procedure described above. 1,3-dicyclohexyl-2-phenylguanidine (**4a**) was obtained in 95 % yield after a reaction time of 6 hours at 60°C.

Yield: 78 mg, 95%. ¹H NMR (400 MHz, CDCl₃): δ 7.27-7.24 (m, 2H, Ar-*H*), 7.03-6.95 (m, 1H, Ar-*H*), 6.92-6.90 (d, 2H, Ar-*H*), 3.40 (br, 2H, N*H*), 1.98-1.13 (m, 22H, C*H* and C*H*₂ of cyclohexyl) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.8 (C=N), 150.2, 129.9, 128.5, 127.5, 125.5, 122.9, (Ar-C), 50.5(CH), 33.7 (CH₂), 25.6 (CH₂), 24.8(CH₂). FT-IR (selected frequencies): υ = 3271 (N-H), 3062 (aromatic C-H), 2927 (sp³ C-H), 2852 (sp³ C-H), 1550 (aromatic C-C), 1447 (C-H bend), 1346 (C=N), 889, 862, 837, 795, 738 (aromatic C-H oop) cm⁻¹. MS: m/z 345.2898 (M⁺).

Insertion of 2-chloroaniline into carbodiamide

The insertion of 2-chloroaniline (32 mg, 0.276 mmol) into carbodiamide (54mg, 0.276 mmol) was carried out following the general procedure described above. 2-(2-chlorophenyl)-1,3-dicyclohexylguanidine (**4e**) was obtained in 53 % yield after a reaction time of 6 hours at 60°C.

Yield: 46 mg, 53%. ¹H NMR (400MHz,CDCl₃): δ 7.22-7.18 (m, 1H, Ar-*H*), 7.07-7.03 (m, 1H, Ar-*H*), 6.77-6.75 (m, 1H, Ar-*H*), 6.70-6.66 (m, 1H, Ar-*H*), 3.35 (br, 2H, N*H*), 1.96-1.12 (m, 22H, C*H* and C*H*₂ of cyclohexyl) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.8 (*C*=N), 150.2, 129.9, 128.5, 127.5, 125.5, 122.9, (Ar-*C*), 50.5 (*C*H), 33.7 (*C*H₂), 25.6 (*C*H₂), 24.8(*C*H₂).

IR(neat, cm⁻¹): v = 3281 (N-H), 3056 (aromatic C-H), 2926 (sp³ C-H), 2852 (sp³ C-H), 1574 (aromatic C-C), 1470 (C-H bend), 1348 (C=N), 1058, 889, 803, 739 (aromatic C-H oop) cm⁻¹. MS: m/z 334.20 (M⁺)

Figure S34. ¹H NMR spectra of compound 4a.

Figure S35. ¹³C NMR spectra of compound 4a.

Figure S36. ¹H NMR spectra of compound 4e.

Figure S37. ¹³C NMR spectra of compound 4e.

General Procedure for Kinetic NMR Experiments.

A typical kinetics study was conducted to establish the reaction order with respect to catalyst $[(NMe_2)_2Ti\{Ph_2P(Se)NCH_2CH_2NPPh_2(Se)\}]$ (1). For kinetic ¹H NMR studies a NMR tube was loaded with the respective amount of complex 1 (0.08, 0.1, 0.12, 0.14, 0.16 M) from a stock solution, 4-chlorophenylisocyanate (0.307 g, 2.0 mmol) and *tert*-butylamine (0.146 g, 2.0 mmol), CDCl₃ (0.4 mL) was added inside the glove box and the tube was sealed. The solution was set in the NMR tube at 25°C. At the indicated time intervals, the tube was analyzed by ¹H NMR. As expected, plots of $ln[(CH_3)_3CNH_2]/[(CH_3)_3CNH_2]_0$ vs. time for a wide range of catalyst $[(NMe_2)_2Ti\{Ph_2P(Se)NCH_2CH_2NPPh_2(Se)\}]$ are linear .(Fig S35, Table S2). A plot of k_{obs} vs. $[(NMe_2)_2Ti\{Ph_2P(Se)NCH_2CH_2NPPh_2(Se)\}]$ (Fig S36, Table S2) is also linear, with slope 0.404 which indicate the rate law of the reaction follow first order dependence with respect to catalyst $[(NMe_2)_2Ti\{Ph_2P(Se)NCH_2CH_2NPPh_2(Se)\}]$. Same experiment also conducted varing wide range of concentration of CIPhNCO (1, 1.5, 2, 2.5, 3 M) and (CH₃)₃CNH₂ (1, 1.5, 2, 2.5, 3 M)

which were also linear and follows first order dependence with respect to ClPhNCO and (CH₃)₃CNH₂.(Fig 42, Table 5, Fig 43, Table 6).

S.No	[<i>tert-</i> butylamine]/[1]	Time(m)	Conversion ^a	[(CH ₃) ₃ C NH ₂] ^b	ln[(CH ₃) ₃ CNH ₂]/[(CH ₃) ₃ CNH ₂] ₀
1	100/4	0	0	0	0
2	100/4	10	22.5%	1.55	254
3	100/4	20	37.5%	1.25	470
4	100/4	30	49%	1.02	6733
5	100/4	40	59%	0.82	891
6	100/4	50	66.5%	0.67	-1.09
7	100/4	60	75.5%	0.49	-1.41
8	100/4	70	80%	0.40	-1.61
9	100/5	0	0	0	0
10	100/5	10	25.5%	1.49	294
11	100/5	20	42.5%	1.15	553
12	100/5	30	55%	0.90	.798
13	100/5	40	67%	0.66	-1.11
14	100/5	50	75.5%	0.49	-1.41
15	100/5	60	81.5%	0.37	-1.68
16	100/5	70	88%	0.244	-2.10

Table S2. First order kinetics plots for $\ln[(CH_3)_3CNH_2]/[(CH_3)_3CNH_2]_0$ with time in CDCl₃(0.4 mL) with different concentration of $[(NMe_2)_2Ti\{Ph_2P(Se)NCH_2CH_2NPPh_2(Se)\}]$.

17	100/6	0	0	0	0
18	100/6	10	27.5	1.45	-0.315
19	100/6	20	46	1.08	-0.615
20	100/6	30	62.5	0.754	-0.975
21	100/6	40	70	0.596	-1.21
22	100/6	50	80	0.403	-1.6
23	100/6	60	87	0.257	-2.05
24	100/6	70	91	0.188	-2.36
25	100/7	0	0	0	0
26	100/7	10	28.5%	1.43	-0.335
27	100/7	20	48%	1.04	-0.653
28	100/7	30	62.5%	0.75	981
29	100/7	40	74%	0.52	-1.34
30	100/7	50	83.5%	0.33	-1.80
31	100/7	60	89.5%	0.21	-2.25
32	100/7	70	92.5%	0.15	-2.59
33	100/8	0	0	0	0
34	100/8	10	49%	1.04	654
35	100/8	20	64%	0.735	-1.00
36	100/8	30	79%	0.42	-1.56
37	100/8	40	87%	0.26	-2.04
38	100/8	50	92%	0.16	-2.52

39	100/8	60	95%	0.10	-2.99
40	100/8	70	97%	0.07	-3.4

^a Obtained from 1H NMR analysis

Figure S38. First order kinetics plots for $ln[(CH_3)_3CNH_2]/[(CH_3)_3CNH_2]_0$ with time in CDCl₃ (0.4 mL) with different concentration of $[(NMe_2)_2Ti\{Ph_2P(Se)NCH_2CH_2NPPh_2(Se)\}]$ (1) at 25°C.

Table S3. Kinetics plots of K_{obs} vs [(NMe₂)₂Ti{Ph₂P(Se)NCH₂CH₂NPPh₂(Se)}] for the reaction of [4-chlorophenylisocyanate] = 2.0 M with [*tert*-butylamine] = 2.0 M in CDCl₃ (0.4 mL) at 25°C.

S.NO.	[(NMe ₂) ₂ Ti{Ph ₂ P(Se)NCH ₂ CH ₂ NPPh ₂ (Se)}]	K _{obs}
1	0.08	0.0227
2	0.1	0.029
3	0.12	0.034
4	0.14	0.0377
5	0.16	0.0492

Figure S39. Kinetics plots of K_{obs} vs [(NMe₂)₂Ti{Ph₂P(Se)NCH₂CH₂NPPh₂(Se)}] for the reaction of [4-chlorophenylisocyanate] = 2.0 M with [*tert*-butylamine] = 2.0 M in CDCl₃ (0.4 mL) at 25°C.

Table S4. First order kinetics plots for $\ln[(CH_3)_3CNH_2]/[(CH_3)_3CNH_2]_0$ with time in CDCl₃(0.4 mL) with different concentration of [ClPhNCO].

S.No	[tert-	[ClPhNCO]	Time(m)	Conversion ^a	[(CH ₃) ₃ CNH ₂] ^b	ln[(CH ₃) ₃ CNH ₂]/
	butylamine]/[1]					[(CH ₃) ₃ CNH ₂] ₀
1	100/5	1	0	0	0	0
2	100/5	1	10	14%	1.72	151
3	100/5	1	20	25%	1.5	287
4	100/5	1	30	33%	1.34	400
5	100/5	1	40	42%	1.16	544
6	100/5	1	50	49%	1.02	673
7	100/5	1	60	57%	0.86	843
8	100/5	1	70	65%	0.7	-1.04
9	100/5	1.5	0	0	0	0
10	100/5	1.5	10	21%	1.58	235
11	100/5	1.5	20	35%	1.3	430
12	100/5	1.5	30	47%	1.06	634
13	100/5	1.5	40	56%	0.88	821
14	100/5	1.5	50	63%	0.74	-0.994
15	100/5	1.5	60	73%	0.54	-1.31
16	100/5	1.5	70	79%	0.42	-1.56
17	100/5	2	0	0	0	0
18	100/5	2	10	22.5%	1.55	254
19	100/5	2	20	37.5%	1.25	470
20	100/5	2	30	49%	1.02	6733
21	100/5	2	40	59%	0.82	891

22	100/5	2	50	66.5%	0.67	-1.09
23	100/5	2	60	75.5%	0.49	-1.41
24	100/5	2	70	80%	0.40	-1.61
25	100/5	2.5	0	0	0	0
26	100/5	2.5	10	26%	1.48	0.301
27	100/5	2.5	20	45%	1.1	-0.597
28	100/5	2.5	30	61%	0.78	941
29	100/5	2.5	40	71%	0.58	-1.23
30	100/5	2.5	50	81%	0.38	-1.66
31	100/5	2.5	60	87%	0.26	-2.04
32	100/5	2.5	70	91%	0.18	-2.40
33	100/5	3	0	0	0	0
34	100/5	3	10	45%	1.1	597
35	100/5	3	20	61%	0.78	-0.941
36	100/5	3	30	75%	0.50	-1.38
37	100/5	3	40	83%	0.34	-1.77
38	100/5	3	50	89%	0.22	-2.20
39	100/5	3	60	93%	0.14	-2.65
40	100/5	3	70	96%	0.036	-3.30

Figure S40. First order kinetics plots for $ln[(CH_3)_3CNH_2]/[(CH_3)_3CNH_2]_0$ with time in CDCl₃ (0.4 mL) with different concentration of [ClPhNCO] at 25°C.

Table S5. Table for Formation rates of ClPhNHCONHC(CH₃)₃ versus the ratios of ClPhNCO / $(CH_3)_3CNH_2$ in CDCl₃ at 298 K, indicating a linear dependence. Conditions: $[(NMe_2)_2Ti{Ph_2P(Se)NCH_2CH_2NPPh_2(Se)}]$ (5 mol%, 0.1 mmol), (CH₃)₃CNH₂ (2 mmol),CDCl₃ (0.4 mL).

S.NO.	[ClPhNCO]	K _{obs}
1	1	0.0143
2	1.5	0.0216
3	2	0.029
4	2.5	0.0345
5	3	0.0446

Figure 41. Kinetics plots for Formation rates of ClPhNHCONHC(CH₃)₃ versus the ratios of ClPhNCO / $(CH_3)_3CNH_2$ in CDCl₃ at 298 K, indicating a linear dependence. Conditions: $[(NMe_2)_2Ti{Ph_2P(Se)NCH_2CH_2NPPh_2(Se)}]$ (5 mol%, 0.1 mmol), $(CH_3)_3CNH_2$ (2 mmol), CDCl₃ (0.4 mL).

Table S6. Table for Formation rates of ClPhNHCONHC(CH₃)₃ versus the ratios of ClPhNCO / (CH₃)₃CNH₂ in CDCl₃ at 298 K, indicating a linear dependence. Conditions: [(NMe₂)₂Ti{Ph₂P(Se)NCH₂CH₂NPPh₂(Se)}] (5 mol%, 0.1 mmol), ClPhNCO (2 mmol), CDCl₃ (0.4 mL).

S.NO.	(CH ₃) ₃ CNH ₂	K _{obs}
1	1	0.0155
2	1.5	0.0239
3	2	0.0296
4	2.5	0.0399
5	3	0.0498

Figure 42. Kinetics plots for Formation rates of ClPhNHCONHC(CH₃)₃ versus the ratios of ClPhNCO / $(CH_3)_3CNH_2$ in CDCl₃ at 298 K, indicating a linear dependence. Conditions: $[(NMe_2)_2Ti\{Ph_2P(Se)NCH_2CH_2NPPh_2(Se)\}]$ (5 mol%, 0.1 mmol), ClPhNCO (2 mmol), CDCl₃ (0.4 mL).

Figure 43: ¹H NMR spectra for the reaction of *4*-chlorophenylisocyanate with *tert*-butyl amine catalysed by complex **1**. This spectrum is shown only highlighted in a range between 1-2 ppm for clarity.

Figure S44. ¹H NMR spectra of DCC with aniline without Catalyst.

Figure S45. ¹³C NMR spectra of DCC with aniline without Catalyst.

Figure S46. ¹H NMR spectra of PhNCS with Dippaniline without Catalyst.

Figure S47. ¹H NMR spectra of PhNCO with 2-Fluroaniline without Catalyst.

References:

- 1. S. R. K Isabell, T Matthias, S. E. Moris, Angew. Chem. Int. Ed. 2015, 54, 1-5.
- 2. A. C. Behrle, J. A. R. Schmidt, Organometallics 2013, 32, 1141.
- 3. V. J. Sattigeri, A. Soni, S. Singhal, S. Khan, M. Pandya, P. Bhateja, T. Mathur, A. Rattan,
- J. M. Khanna, A. Mehta, ARKIVOC 2005, 46.
- 4. C.-M. Chao, T.-J. Chuan, K.-M. Liu, RCS Adv. 2014, 4, 1276.
- 5. K Naktode, S Das, J Bhattacharjee, H P Nayek and T K Panda, 2016 Inorg Chem, 553 1142-1153.