Supporting Information

Structural Snapshots in the Copper(II) Induced Azide-Nitrile Cycloaddition: Effect of Peripheral Ligand Substituents on the Formation of Unsupported $\mu_{1,1}$ -Azido vs. $\mu_{1,4}$ -Tetrazolato Bridged Complexes

Michael G. Sommer,^a Yvonne Rechkemmer,^b Lisa Suntrup,^a Stephan Hohloch,^a Margarethe

van der Meer,^b Joris van Slageren^{b,} * and Biprajit Sarkar^{a,} *

Table S 1: Crystallographic details2	
Table S 2. Selected bond lengths of Cu(TBTA)N ₃ ·1.5CH3CN (1·1.5CH3CN)	5
Table S 3. Selected angles in Cu(TBTA)N ₃ ·1.5CH3CN (1·1.5CH3CN)	5
Table S 4. Selected bond lengths of [Cu(TPTA)(N ₃)]ClO ₄ ·CH ₃ CN (2·CH ₃ CN)4	Ļ
Table S 5. Selected angles in [Cu(TPTA)(N ₃)]ClO₄·CH ₃ CN (2·CH ₃ CN)	Ļ
Table S 6. Selected bond lengths of [Cu(TDTA)(N ₃)]ClO ₄ (3)5	,
Table S 7. Selected angles in [Cu(TDTA)(N ₃)]ClO ₄ (3)5	,
Table S 8. Selected bond lengths of $[Cu_2(TBTA)_2(\mu_{1,1}-N_3)](ClO_4)_3\cdot 0.5CH_3CN\cdot 0.5CH_3CN$ (4	
·0.5CH ₃ CN·0.5H ₂ O)6	;
Table S 9. Selected angles in $[Cu_2(TBTA)_2(\mu_{1,1}-N_3)](CIO_4)_3 \cdot 0.5CH_3CN \cdot 0.5CH_3CN (4 \cdot 0.5CH_3CN \cdot 0.5H_2O) \dots 0.5H_2O)$;
Table S 10. Selected bond lengths of $[Cu_2(TDTA)_2(\mu_{1,4}-(5-methyltetrazolate))](ClO_4)_3 \cdot 4CH_3CN$	
(5·4CH ₃ CN)	,
Table S 11. Selected angles in $[Cu_2(TDTA)_2(\mu_{1,4}-(5-methyltetrazolate))](ClO_4)_3 \cdot 4CH_3CN (5\cdot 4CH_3CN) \dots 700 + 1$,
Table S 12. Selected bond lengths of [Cu(TDTA)(C ₂ H ₅ CN)]ClO ₄ ·C ₂ H ₅ CN·C ₄ H ₁₀ O (6·C ₂ H ₅ CN·C ₄ H ₁₀ O)8	;
Table S 13. Selected angles in $[Cu(TDTA)(C_2H_5CN)]CIO_4 \cdot C_2H_5CN \cdot C_4H_{10}O$ ($6 \cdot C_2H_5CN \cdot C_4H_{10}O$)	;
Table S 14. Selected bond lengths of $[Cu_2(TDTA)_2(\mu_{1,4}-(5-ethyltetrazolate))](ClO_4)_3\cdot 2C_4H_{10}O\cdot 5C_2H_5CN$	
(7·2C ₄ H ₁₀ O·5C ₂ H ₅ CN))
Table S 15. Selected angles in $[Cu_2(TDTA)_2(\mu_{1,4}-(5-ethyltetrazolate))](ClO_4)_3\cdot 2C_4H_{10}O\cdot 5C_2H_5CN$	
(7·2C ₄ H ₁₀ O·5C ₂ H ₅ CN))

Figure S 2. IR-spectrum of $[Cu(TPTA)(N_3)]ClO_4 \cdot CH_3CN (2 \cdot CH_3CN)11$ Figure S 3. IR-spectrum of $[Cu(TDTA)(N_3)]ClO_4 (3)$	Figure S 1. IR-spectrum of Cu(TBTA)N ₃ (ClO4) \cdot 1.5CH3CN (1 \cdot 1.5CH3CN)	
Figure S 3. IR-spectrum of $[Cu(TDTA)(N_3)]ClO_4$ (3)	Figure S 2. IR-spectrum of [Cu(TPTA)(N ₃)]ClO ₄ ·CH ₃ CN (2 ·CH ₃ CN)	11
Figure S 4. IR-spectrum of $[Cu_2(TBTA)_2(\mu_{1,1}-N_3)](ClO_4)_3 \cdot 0.5CH_3CN \cdot 0.5CH_3CN (4 \cdot 0.5CH_3CN \cdot 0.5CH_3CN). 13$ Figure S 5. IR-spectrum of $[Cu_2(TDTA)_2(\mu_{1,4}-(5-methyltetrazolate))](ClO_4)_3 \cdot 4CH_3CN (5 \cdot 4CH_3CN)$	Figure S 3. IR-spectrum of [Cu(TDTA)(N ₃)]ClO ₄ (3)	
Figure S 5. IR-spectrum of $[Cu_2(TDTA)_2(\mu_{1,4}-(5-methyltetrazolate))](ClO_4)_3 \cdot 4CH_3CN (5 \cdot 4CH_3CN) \dots 14$ Figure S 6. Magnetization (red circles) and simulation ($J = -26.0 \text{ cm}^{-1}$, $g_{av} = 2.1$, $H = -2J\hat{S}_1\hat{S}_2$; black line) 5 at 2 K with 4 % of uncoupled $S = \frac{1}{2}$	Figure S 4. IR-spectrum of $[Cu_2(TBTA)_2(\mu_{1,1}-N_3)](CIO_4)_3 \cdot 0.5CH_3CN \cdot 0.5CH_3CN$ (4 $\cdot 0.5CH_3CN$)	0.5CH ₃ CN).13
Figure S 6. Magnetization (red circles) and simulation $(J = -26.0 \text{ cm}^{-1}, g_{av} = 2.1, H = -2J\hat{S}_1\hat{S}_2; \text{black}$ line) 5 at 2 K with 4 % of uncoupled $S = \frac{1}{2}$	Figure S 5. IR-spectrum of $[Cu_2(TDTA)_2(\mu_{1,4}-(5-methyltetrazolate))](ClO_4)_3 \cdot 4CH_3CN$ (5.40)	CH₃CN)14
line) 5 at 2 K with 4 % of uncoupled $S = \frac{1}{2}$	Figure S 6. Magnetization (red circles) and simulation ($J = -26.0 \text{ cm}^{-1}$, $g_{av} = 2.1$, $H = -2 J$	$\hat{\mathrm{S}}_1\hat{\mathrm{S}}_2$; black
Figure S 7. Experimental (red circles) and simulated ($J = -26.0 \text{ cm}^{-1}$, $g_{av} = 2.1$, $H = -2 J \hat{S}_1 \hat{S}_2$; black line) temperature dependence of χ_m of 5 with 4 % of uncoupled $S = \frac{1}{2}$	line) 5 at 2 K with 4 % of uncoupled $S = \frac{1}{2}$.	15
temperature dependence of χ_m of 5 with 4 % of uncoupled $S = \frac{1}{2}$	Figure S 7. Experimental (red circles) and simulated (J = -26.0 cm ⁻¹ , g_{av} = 2.1, H = -2 $J \hat{S}_1$	${\hat{ m S}}_2$; black line)
Figure S 8. Magnetization of 4 at 2 K and 5 K16	temperature dependence of χ_m of 5 with 4 % of uncoupled $S = \frac{1}{2}$	15
	Figure S 8. Magnetization of 4 at 2 K and 5 K.	

Table S 1: Crystallographic details.

	1.1.5CH ₃ CN	2·CH₃CN	3	4.0.5CH3CN.0.5H2O	6·C₂H₅CN ·C₄H ₁₀ O	5·4CH ₃ CN	7·2C ₄ H ₁₀ O·5C ₂ H ₅ CN
Chemical formula sum	$C_{66}H_{69}Cl_2Cu_2N_{29}O_8$	C ₂₉ H ₂₇ ClCuN ₁₄ O ₄	$C_{45}H_{60}CICuN_{13}O_4$	C ₁₂₂ H ₁₂₃ Cl ₆ Cu ₄ N ₄₇ O ₂₅	$C_{55}H_{80}Cl_2CuN_{12}O_9$	$C_{100}H_{111}CI_{3}Cu_{2}N_{28}O_{12}$	$C_{116}H_{167}CI_{3}Cu_{2}N_{29}O_{14}$
M _r	1594.48	734.64	946.05	3114.53	1187.75	2130.60	2139.27
Т (К)	110(2)	140(2)	140(2)	100(2)	118(2)	140(2)	100(2)
λ (Å)	0.71073	0.71073	0.71069	0.71073	0.71073	0.71069	1.54178
Crystal system	monoclinic	triclinic	monoclinic	monoclinic	orthorhombic	triclinic	triclinic
Space group	P2(1)/n	P-1	P2(1)/c	P2(1)/c	Pbca	P-1	P-1
a, b, c (Å)	11.9577(6)	7.762(3)	22.312(5)	16.848(4)	20.631(2)	16.768(5)	15.7730(7)
	25.9892(14)	9.934(4)	16.019(5)	15.524(4)	23.395(2)	18.962(5)	16.4587(7)
	12.0161(6)	21.094(7)	13.436(5)	27.236(6)	26.182(2)	19.579(5)	26.440(1)
α,β, γ (deg)	90	81.671(7)	90	90	90	93.974(5)	88.921(2)
	91.070(3)	80.955(7)	100.679(5)	102.622(5)	90	99.507(5)	89.865(2)
	90	87.227(7)	90	90	90	93.995(5)	71.279(2)
V (ų)	3733.6(3)	1588.8(9)	4719(3)	6952(3)	12636(2)	6104(3)	6499.6(5)
Z	2	2	4	2	8	2	2
D_{calc} (g cm ⁻³)	1.418	1.536	1.332	1.488	1.249	1.159	1.093
μ (mm⁻¹)	0.715	0.832	0.576	0.806	0.490	0.477	1.447
meas. O-range (deg)	1.57-28.40	0.99-25.19	0.93-25.43	1.24-25.10	2.294-25.394	1.06-26.44	2.835-68.511
Indexbereich	-14 <h<15< td=""><td>-9<h<8< td=""><td>-26<h<26< td=""><td>-20<h<20< td=""><td>-22<h<24< td=""><td>-19<h<20< td=""><td>-18<h<18< td=""></h<18<></td></h<20<></td></h<24<></td></h<20<></td></h<26<></td></h<8<></td></h<15<>	-9 <h<8< td=""><td>-26<h<26< td=""><td>-20<h<20< td=""><td>-22<h<24< td=""><td>-19<h<20< td=""><td>-18<h<18< td=""></h<18<></td></h<20<></td></h<24<></td></h<20<></td></h<26<></td></h<8<>	-26 <h<26< td=""><td>-20<h<20< td=""><td>-22<h<24< td=""><td>-19<h<20< td=""><td>-18<h<18< td=""></h<18<></td></h<20<></td></h<24<></td></h<20<></td></h<26<>	-20 <h<20< td=""><td>-22<h<24< td=""><td>-19<h<20< td=""><td>-18<h<18< td=""></h<18<></td></h<20<></td></h<24<></td></h<20<>	-22 <h<24< td=""><td>-19<h<20< td=""><td>-18<h<18< td=""></h<18<></td></h<20<></td></h<24<>	-19 <h<20< td=""><td>-18<h<18< td=""></h<18<></td></h<20<>	-18 <h<18< td=""></h<18<>
	-34 <k<34< td=""><td>-11<k<11< td=""><td>-19<k<19< td=""><td>-18<k<13< td=""><td>-28<k<28< td=""><td>-23<k<23< td=""><td>-19<k<19< td=""></k<19<></td></k<23<></td></k<28<></td></k<13<></td></k<19<></td></k<11<></td></k<34<>	-11 <k<11< td=""><td>-19<k<19< td=""><td>-18<k<13< td=""><td>-28<k<28< td=""><td>-23<k<23< td=""><td>-19<k<19< td=""></k<19<></td></k<23<></td></k<28<></td></k<13<></td></k<19<></td></k<11<>	-19 <k<19< td=""><td>-18<k<13< td=""><td>-28<k<28< td=""><td>-23<k<23< td=""><td>-19<k<19< td=""></k<19<></td></k<23<></td></k<28<></td></k<13<></td></k<19<>	-18 <k<13< td=""><td>-28<k<28< td=""><td>-23<k<23< td=""><td>-19<k<19< td=""></k<19<></td></k<23<></td></k<28<></td></k<13<>	-28 <k<28< td=""><td>-23<k<23< td=""><td>-19<k<19< td=""></k<19<></td></k<23<></td></k<28<>	-23 <k<23< td=""><td>-19<k<19< td=""></k<19<></td></k<23<>	-19 <k<19< td=""></k<19<>
	-16< <16	-25<1<24	-15 <l<16< td=""><td>-29<1<32</td><td>-30<l<31< td=""><td>-24<1<24</td><td>-31<l<31< td=""></l<31<></td></l<31<></td></l<16<>	-29<1<32	-30 <l<31< td=""><td>-24<1<24</td><td>-31<l<31< td=""></l<31<></td></l<31<>	-24<1<24	-31 <l<31< td=""></l<31<>
F(000)	1648	754	1996	3204	5032	2224	2556
meas. refl	67219	17407	51599	45566	123313	56577	81650
indep. refl.	9319	5654	8548	12289	11591	24109	23699
data / restraints / param.	9319/0/498	5654/6/443	8548/0/586	12289/0/938	11591/0/755	24109/33/1370	23699/21/1423
Goodness-of-fit on F ²	1.046	1.051	1.151	1.070	0.991	1.059	1.051
$R_1 [F^2 > 2\sigma (F^2)]$	0.0435	0.0557	0.0654	0.0541	0.0544	0.0632	0.0746
WR_2 (F ²)	0.1173	0.1175	0.2088	0.1467	0.1318	0.1887	0.2187
R _{int}	0.0318	0.0734	0.0736	0.0387	0.0694	0.0221	0.0364
$\Delta \rho_{max}; \Delta \rho_{min}$ (e Å ⁻³)	1.601; -0.445	0.624; -0.782	1.161; -1.047	0.952; -0.597	0.919; -0.900	1.645; -1.286	1.205; -0.523
CCDC	966777	972217	1482435	966775	1482436	1482437	1482438

bond	d / Å
Cu1-N1	2.120(2)
Cu1-N10	2.037(2)
Cu1-N20	2.045(2)
Cu1-N30	2.088(2)
Cu1-N2	1.935(2)
N2-N3	1.204(3)
N3-N4	1.142(3)
Cu1- plane (tz-Ns)	0.376(1)

Table S 2. Selected bond lengths of Cu(TBTA)N_3 $\cdot 1.5$ CH3CN (1 $\cdot 1.5$ CH3CN).

Table S 3. Selected angles in Cu(TBTA)N $_3$ ·1.5CH3CN (1·1.5CH3CN).

angle	4 / °
N1-Cu1-N10	79.4(1)
N1-Cu1-N20	80.5(1)
N1-Cu1-N30	78.5(1)
N1-Cu1-N2	175.2(1)
N2-Cu1-N10	95.9(1)
N2-Cu1-N20	102.8(1)
N2-Cu1-N30	103.4(1)
N10-Cu1-N20	119.7(1)
N20-Cu1-N30	110.2(1)
N30-Cu1-N10	120.5(1)
Cu1-N2-N3	120.1(2)
N2-N3-N4	176.4(3)

bond	d / Å
Cu1-N2	1.908(4)
Cu1-N10	1.972(4)
Cu1-N20	2.046(4)
Cu1-N30	2.047(4)
Cu1-N1	2.154(4)
N2-N3	1.179(6)
N3-N4	1.144(7)
Cu1-plane (tz-Ns)	0.367

 Table S 4. Selected bond lengths of $[Cu(TPTA)(N_3)]ClO_4 \cdot CH_3CN (2 \cdot CH_3CN).$

Table S 5. Selected angles in $[Cu(TPTA)(N_3)]CIO_4 \cdot CH_3CN$ (2·CH₃CN).

angle	∡/°
N3-N2-Cu1	125.5(4)
N2-Cu1-N1	177.0(2)
N2-Cu1-N10	102.8(2)
N2-Cu1-N20	97.2(2)
N2-Cu1-N30	101.2(2)
N10-Cu1-N1	79.2(2)
N20-Cu1-N1	79.8(1)
N30-Cu1-N1	79.6(2)
N20-Cu1-N10	123.8(2)
N20-Cu1-N30	107.6(2)
N30-Cu1-N10	118.8(2)

d/Å bond Cu1-N2 1.909(4) Cu1-N10 2.006(4) Cu1-N20 2.008(4) Cu1-N30 2.086(4) 2.105(4) Cu1-N1 N2-N3 1.184(6) N3-N4 1.133(6) Cu1-plane (tz-Ns) 0.347

Table S 6. Selected bond lengths of $[Cu(TDTA)(N_3)]ClO_4(3)$.

Table S 7. Selected angles in $[Cu(TDTA)(N_3)]ClO_4$ (3).

angle	4 / °
N3-N2-Cu1	120.1(3)
N2-Cu1-N1	176.6(2)
N2-Cu1-N10	97.8(2)
N2-Cu1-N20	98.8(2)
N2-Cu1-N30	103.7(2)
N10-Cu1-N1	80.6(2)
N20-Cu1-N1	80.0(2)
N30-Cu1-N1	79.8(1)
N20-Cu1-N10	128.3(2)
N20-Cu1-N30	109.4(2)
N30-Cu1-N10	113.5(2)

bond	d / Å
Cu1-N2	1.959(3)
Cu1-N5	2.083(3)
Cu1-N40	2.026(3)
Cu1-N50	2.079(3)
Cu1-N60	2.043(3)
Cu2-N2	1.963(3)
Cu2-N1	2.116(3)
Cu2-N10	2.076(3)
Cu2-N20	2.046(3)
Cu2-N30	2.010(3)
N2-N3	1.250(5)
N3-N4	1.152(5)
Cu1-Cu2	3.470(1)
Cu1-plane (tz-Ns)	0.340(1)
Cu2-plane (tz-Ns)	0.342(1)

Table S 8. Selected bond lengths of $[Cu_2(TBTA)_2(\mu_{1,1}-N_3)](CIO_4)_3 \cdot 0.5CH_3CN \cdot 0.5CH_3CN (4 \cdot 0.5CH_3CN \cdot 0.5H_2O).$

angle	∡/°
Cu1-N2-Cu2	124.4(2)
N3-N2-Cu1	111.1(3)
N3-N2-Cu2	119.4(3)
N4-N3-N2	177.6(5)
N2-Cu1-N5	174.3(1)
N2-Cu1-N40	67.8(1)
N2-Cu1-N50	100.7(2)
N2-Cu1-N60	102.9(2)
N40-Cu1-N5	79.6(1)
N50-Cu1-N5	80.5(2)
N60-Cu1-N5	81.3(2)
N40-Cu1-N50	109.9(2)
N40-Cu1-N60	124.5(2)
N50-Cu1-N60	117.4(2)
N2-Cu2-N1	176.8(2)
N2-Cu2-N10	102.5(1)
N2-Cu2-N20	101.2(2)
N2-Cu2-N30	95.9(2)
N10-Cu2-N1	79.1(2)
N20-Cu2-N1	80.8(2)
N30-Cu2-N1	80.9(2)
N30-Cu2-N20	129.1(2)
N30-Cu2-N10	113.8(2)
N10-Cu2-N20	108.7(2)

bond	d / Å
Cu1-N1	2.133(2)
Cu1-N100	1.972(2)
Cu1-N10	1.961(2)
Cu1-N20	1.979(2)
Cu1-N30	2.175(2)
Cu2-N2	2.100(2)
Cu2-N400	1.950(2)
Cu2-N70	2.082(2)
Cu2-N80	2.045(2)
Cu2-N90	2.044(2)
N100-N200	1.349(3)
N200-N300	1.295(3)
N300-N400	1.354(2)
N400-C200	1.331(3)
C200-N100	1.324(3)
Cu1-Cu2	6.021(1)
Cu1-plane (tz-Ns)	0.342(1)
Cu2-plane (tz-Ns)	0.370(1)
Cu1-Cu2(intermolecualar)	9.385(2)

 $\label{eq:table_$

 $\label{eq:constraint} \mbox{Table S 11. Selected angles in $[Cu_2(TDTA)_2(\mu_{1,4}-(5-methyltetrazolate))](ClO_4)_3 \cdot 4CH_3CN$ ($5\cdot 4CH_3CN). $$ \label{eq:constraint} $$ \label{eq:constraint} \labe$

angle	4 / °
Cu1-N100-C200	137.5(1)
C200-N400-Cu2	131.7(1)
N100-C200-N400	108.9(1)
N1-Cu1-N100	170.6(1)
N1-Cu1-N10	81.3(1)
N1-Cu1-N20	79.7(1)
N1-Cu1-N30	79.3(1)
N10-Cu1-N100	65.8(1)
N20-Cu1-N100	97.6(1)
N30-Cu1-N100	110.1(1)
N10-Cu1-N20	141.6(1)
N20-Cu1-N30	108.8(1)
N30-Cu1-N10	100.0(1)
N2-Cu2-N400	177.5(1)
N2-Cu2-N70	79.2(1)
N2-Cu2-N80	79.7(1)
N2-Cu2-N90	80.0(1)
N70-Cu2-N400	100.1(1)
N80-Cu2-N400	102.8(1)
N90-Cu2-N400	98.1(1)
N90-Cu2-N80	123.2(1)
N90-Cu2-N70	111.4(1)
N70-Cu2-N80	115.9(1)

bond	d / Å
Cu1-N2	1.949(3)
Cu1-N10	2.148(2)
Cu1-N20	2.004(2)
Cu1-N30	1.990(2)
Cu1-N1	2.082(2)
N2-C1	1.126(4)
Cu1-plane (tz-Ns)	0.313

 $\textbf{Table S 12.} Selected bond lengths of [Cu(TDTA)(C_2H_5CN)]ClO_4 \cdot C_2H_5CN \cdot C_4H_{10}O (\textbf{6} \cdot C_2H_5CN \cdot C_4H_{10}O).$

Table S 13. Selected angles in $[Cu(TDTA)(C_2H_5CN)]ClO_4 \cdot C_2H_5CN \cdot C_4H_{10}O$ ($6 \cdot C_2H_5CN \cdot C_4H_{10}O$).

angle	4 / °
C1-N2-Cu1	166.8(3)
N2-Cu1-N1	177.0(1)
N2-Cu1-N10	102.8(1)
N2-Cu1-N20	95.9(1)
N2-Cu1-N30	98.8(1)
N10-Cu1-N1	80.0(1)
N20-Cu1-N1	82.7(1)
N30-Cu1-N1	80.5(1)
N20-Cu1-N10	99.1(1)
N20-Cu1-N30	136.0(1)
N30-Cu1-N10	117.4(1)

bond	d / Å
Cu1-N1	2.114(3)
Cu1-N100	1.944(3)
Cu1-N10	2.044(3)
Cu1-N20	2.068(3)
Cu1-N30	2.047(3)
Cu2-N2	2.103(3)
Cu2-N400	1.937(2)
Cu2-N70	2.076(3)
Cu2-N80	2.051(3)
Cu2-N90	2.004(3)
N100-N200	1.312(5)
N200-N300	1.290(6)
N300-N400	1.406(5)
N400-C400	1.296(4)
C400-N100	1.310(4)
Cu1-Cu2	5.991(1)
Cu1-plane (tz-Ns)	0.367(1)
Cu2-plane (tz-Ns)	0.355(1)

 $\textbf{Table S 14. Selected bond lengths of } [Cu_2(TDTA)_2(\mu_{1,4}-(5-ethyltetrazolate))] (ClO_4)_3\cdot 2C_4H_{10}O\cdot 5C_2H_5CN (\textbf{7}\cdot 2C_4H_{10}O\cdot 5C_2H_5CN).$

 $\textbf{Table S 15. Selected angles in [Cu_2(TDTA)_2(\mu_{1,4}-(5-ethyltetrazolate))](ClO_4)_3 \cdot 2C_4H_{10}O \cdot 5C_2H_5CN (\textbf{7} \cdot 2C_4H_{10}O \cdot 5C_2H_5CN).}$

angle	4/°
Cu1-N100-C400	138.2(2)
C400-N400-Cu2	136.7(2)
N100-C200-N400	111.2(3)
N1-Cu1-N100	176.4(2)
N1-Cu1-N10	80.0(2)
N1-Cu1-N20	79.7(1)
N1-Cu1-N30	79.3(1)
N10-Cu1-N100	99.7(1)
N20-Cu1-N100	103.5(1)
N30-Cu1-N100	98.0(2)
N10-Cu1-N20	117.3(2)
N20-Cu1-N30	109.1(2)
N30-Cu1-N10	124.1(1)
N2-Cu2-N400	177.2(1)
N2-Cu2-N70	80.0(1)
N2-Cu2-N80	78.7(1)
N2-Cu2-N90	81.2(1)
N70-Cu2-N400	102.4(1)
N80-Cu2-N400	99.0(1)
N90-Cu2-N400	99.1(2)
N90-Cu2-N80	128.7(1)
N90-Cu2-N70	116.4(1)
N70-Cu2-N80	105.8(1)

Fig. S1 IR-spectrum of Cu(TBTA)N₃ ·1.5CH3CN (1·1.5CH3CN).

Fig. S2 IR-spectrum of [Cu(TPTA)(N₃)]ClO₄·CH₃CN (**2**·CH₃CN).

Fig. S3 IR-spectrum of [Cu(TDTA)(N₃)]ClO₄ (3).

Fig. S4 IR-spectrum of $[Cu_2(TBTA)_2(\mu_{1,1}-N_3)](ClO_4)_3 \cdot 0.5CH_3CN \cdot 0.5CH_3CN (4 \cdot 0.5CH_3CN \cdot 0.5CH_3CN).$

Fig. S5 IR-spectrum of $[Cu_2(TDTA)_2(\mu_{1,4}-(5-methyltetrazolate))](ClO_4)_3 \cdot 4CH_3CN$ (5·4CH₃CN).

Fig. S6 Magnetization (red circles) and simulation ($J = -26.0 \text{ cm}^{-1}$, $g_{av} = 2.1$, $H = -2 J \hat{S}_1 \hat{S}_2$; black line) **5** at 2 K with 4 % of uncoupled $S = \frac{1}{2}$.

Fig. S7 Experimental (red circles) and simulated ($J = -26.0 \text{ cm}^{-1}$, $g_{av} = 2.1$, $H = -2 J \hat{S}_1 \hat{S}_2$; black line) temperature dependence of χ_m of **5** with 4 % of uncoupled $S = \frac{1}{2}$.

Fig. S8 Magnetization of 4 at 2 K and 5 K.