Electronic supplementary material

Bis(alkyl) rare-earth complexes coordinated by bulky tridentate amidinate ligands bearing pendant $Ph_2P=O$ and $Ph_2P=NR$ groups. Synthesis, structures and catalytic activity in stereospecific isoprene polymerization

Natalia Yu. Rad'kova,^a Aleksei O. Tolpygin, ^a Vassily Yu. Rad'kov,^a Nadiya M. Khamaletdinova,^a

Anton V. Cherkasov,^{*a*} Georgy K. Fukin,^{*a*} Alexander A. Trifonov^{**a,b*}

^a Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 630950, Nizhny Novgorod (Russia) Fax: 007831 4627497; Tel: 007 831 4623532; E-mail: trif@iomc.ras.ru

^b Institute of Organoelement compounds of Russian Academy of Sciences, Vavilova str. 28, 119334, Moscow, Russia

Contents:

Table 1S. Crystallographic data and structure refinement details for **1**, **3**, **6**-8. **Figure 1S.** ¹H NMR spectrum of 2-[Ph₂P=O]C₆H₄NHC(*t*Bu)=N(2,6-*i*Pr₂C₆H₃) (**1**). **Figure 2S.** ¹³C NMR spectrum of 2-[Ph₂P=O]C₆H₄NHC(*t*Bu)=N(2,6-*i*Pr₂C₆H₃) (**1**). **Figure 3S.** ³¹P NMR spectrum of 2-[Ph₂P=O]C₆H₄NHC(*t*Bu)=N(2,6-*i*Pr₂C₆H₃) (**1**). **Figure 4S.** IR spectrum of 2-[Ph₂P=O]C₆H₄NHC(*t*Bu)=N(2,6-*i*Pr₂C₆H₃) (**1**). **Figure 5S.** ¹H NMR spectrum of 2-(Ph₂P=S)C₆H₄NHC(*t*Bu)=N(2,6-Me₂C₆H₃) (**2**). **Figure 6S.** ¹³C NMR spectrum of 2-(Ph₂P=S)C₆H₄NHC(*t*Bu)=N(2,6-Me₂C₆H₃) (**2**). **Figure 7S.** ³¹P NMR spectrum of 2-(Ph₂P=S)C₆H₄NHC(*t*Bu)=N(2,6-Me₂C₆H₃) (**2**). **Figure 8S.** IR spectrum of 2-(Ph₂P=S)C₆H₄NHC(*t*Bu)=N(2,6-Me₂C₆H₃) (**2**). **Figure 9S.** ¹H NMR spectrum of 2-(Ph₂P=S)C₆H₄NHC(*t*Bu)=N(2,6-Me₂C₆H₃) (**3**). **Figure 10S.** ¹³C NMR spectrum of 2-[Ph₂P=N(Ph)]C₆H₄NHC(*t*Bu)=N(2,6-Me₂C₆H₃) (**3**). **Figure 11S.** ³¹P NMR spectrum of 2-[Ph₂P=N(Ph)]C₆H₄NHC(*t*Bu)=N(2,6-Me₂C₆H₃) (**3**). **Figure 12S.** IR spectrum of 2-[Ph₂P=N(Ph)]C₆H₄NHC(*t*Bu)=N(2,6-Me₂C₆H₃) (**3**). Figure 138. ¹H NMR spectrum of 2-[Ph₂P=N(2,6-Me₂C₆H₃)]C₆H₄NHC(*t*Bu)=N(2,6-Me₂C₆H₃) (4).

Figure 14S. ¹³C NMR spectrum of 2-[Ph₂P=N(2,6-Me₂C₆H₃)]C₆H₄NHC(*t*Bu)=N(2,6-Me₂C₆H₃) (4).

Figure 15S. ³¹P NMR spectrum of 2-[Ph₂P=N(2,6-Me₂C₆H₃)]C₆H₄NHC(*t*Bu)=N(2,6-Me₂C₆H₃) (4).

Figure 16S. IR spectrum of $2-[Ph_2P=N(2,6-Me_2C_6H_3)]C_6H_4NHC(tBu)=N(2,6-Me_2C_6H_3)$ (4).

Figure 17S. ¹H NMR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Y(CH_2SiMe_3)_2$ (5).

Figure 18S. ¹³C NMR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Y(CH_2SiMe_3)_2$ (5).

Figure 19S. ³¹P NMR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Y(CH_2SiMe_3)_2$ (5).

Figure 20S. IR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Y(CH_2SiMe_3)_2$ (5).

Figure 21S. IR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Er(CH_2SiMe_3)_2$ (6).

Figure 22S. ¹H NMR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (7).

Figure 23S. ¹³C NMR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (7).

Figure 24S. ³¹P NMR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (7).

Figure 25S. IR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (7).

Figure 26S. ¹H NMR spectrum of $\{2-[Ph_2P=N(Ph)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Y(CH_2SiMe_3)_2$ (8).

Figure 27S. ¹³C NMR spectrum of $\{2-[Ph_2P=N(Ph)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Y(CH_2SiMe_3)_2$ (8).

Figure 28S. ³¹P NMR spectrum of $\{2-[Ph_2P=N(Ph)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Y(CH_2SiMe_3)_2$ (8).

Figure 29S. IR spectrum of {2-[Ph₂P=N(Ph)]C₆H₄NC(*t*Bu)N(2,6-Me₂C₆H₃)}Y(CH₂SiMe₃)₂ (8).

Figure 30S. ¹H NMR spectrum of $\{2-[Ph_2P=N(Ph)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (9).

Figure 31S. ¹³C NMR spectrum of $\{2-[Ph_2P=N(Ph)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (9).

Figure 32S. ³¹P NMR spectrum of $\{2-[Ph_2P=N(Ph)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (9).

Figure 33S. IR spectrum of $\{2-[Ph_2P=N(Ph)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (9).

Figure 34S. ¹H NMR spectrum of $\{2-[Ph_2P=N(2,6-Me_2C_6H_3)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (10).

Figure 35S. ¹³C NMR spectrum of $\{2-[Ph_2P=N(2,6-Me_2C_6H_3)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (10).

Figure 36S. ³¹P NMR spectrum of $\{2-[Ph_2P=N(2,6-Me_2C_6H_3)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (10).

Figure 37S. IR spectrum of $\{2-[Ph_2P=N(2,6-Me_2C_6H_3)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (10).

Figure 38 S. ¹³C NMR spectrum (50 MHz, CDCl₃) of PIP sample (Table 1, Entry 5)

Figure 39 S. GPC of PIP sample (Table 1, Entry 5)

Figure 40 S. ¹H NMR spectrum (200 MHz, CDCl₃) of PIP sample (Table 1, Entry 9)

Figure 41 S. ¹³C NMR spectrum (50 MHz, CDCl₃) of PIP sample (Table 1, Entry 9)

Figure 42 S. GPC of PIP sample (Table 1, Entry 9)

Figure 43 S. ¹³C NMR spectrum (50 MHz, CDCl₃) of PIP sample (Table 1, Entry 18)

- Figure 44 S. GPC of PIP sample (Table 1, Entry 18)
- Figure 45 S. ¹³C NMR spectrum (50 MHz, CDCl₃) of PIP sample (Table 2, Entry 1)
- Figure 46 S. GPC of PIP sample (Table 2, Entry 1)
- Figure 47 S. ¹³C NMR spectrum (50 MHz, CDCl₃) of PIP sample (Table 2, Entry 3)
- Figure 48 S. GPC of PIP sample (Table 2, Entry 3)
- Figure 49 S. ¹³C NMR spectrum (50 MHz, CDCl₃) of PIP sample (Table 3, Entry 3)
- Figure 50 S. GPC of PIP sample (Table 3, Entry 3)
- **Figure 51 S.** ¹³C NMR spectrum (50 MHz, CDCl₃) of PIP sample (Table 3, Entry 9)
- Figure 52 S. GPC of PIP sample (Table 3, Entry 9)

Table 1S. Crystallographic data and structure refinement details for 1, 3, 6-8.

Compound	1	3	6	7	8		
Empirical formula	$C_{35}H_{41}N_2OP$	C ₃₇ H ₃₈ N ₃ P	C ₅₀ H ₇₀ ErN ₂ OPSi ₂	C ₅₀ H ₇₀ LuN ₂ OPSi ₂	$C_{52}H_{67}N_3PSi_2Y$		
Formula weight	536.67	555.67	969.49	977.20	910.14		
T [K]°	100(2)						
Wavelength [Å]	0.71073						
Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic	Monoclinic		
Space group	P-1	P21/n	P-1	P-1	P2(1)/n		
a [Å]	9.4677(12)	8.98190(10)	12.02608(14)	12.050(2)	11.5972(3)		
b [Å]	12.1398(15)	29.7023(3)	12.31192(17)	12.305(3)	23.2241(5)		
c [Å]	14.1647(18)	11.56075(13)	19.7345(3)	19.732(4)	18.9698(5)		
α [°]	68.6616(18)	90	107.3635(12)	107.281(4)	90		
β[°]	88.5542(19)	96.0995(10)	90.2711(10)	90.382(4)	23.2241(5)		
γ [°]	82.884(2)	90	115.7358(12)	116.065(4)	90		
Volume [Å ³]	1504.4(3)	3066.75(6)	2481.33(6)	2477.3(9)	5109.2(2)		
Z	2	4	2	2	4		
ρ calcd. [g cm ⁻³]	1.185	1.204	1.298	1.310	1.183		
Absorption coefficient	0.121	0.120	1.807	2.109	1.255		

[mm ⁻¹]					
F(000)	576	1184	1006	1012	1928
Crystal size [mm]	0.440×0.230×0.070	0.400×0.400×0.100	0.300×0.200×0.200	0.360×0.180×0.150	0.400×0.200×0.200
θ range for data collection	2.651 to 27.998	3.033 to 27.999	3.118 to 30.000	2.190 to 27.000	2.906 to 25.999
[°]					
Index ranges	-12≤h≤12,	-11≤h≤11,	-16≤h≤16,	-15≤h≤15,	-14≤h≤14,
	-16≤k≤16,	-39≤k≤39,	-17≤k≤17,	-15≤k≤15,	-28≤k≤28,
	-18 <u>≤</u> 1 <u>≤</u> 18	-15≤l≤15	-27≤l≤27	-25≤l≤25	-23 <u>≤</u> 1≤23
Reflections collected	15667	55091	50037	25058	79454
Independent reflections	7218	7377	14452	10772	9966
R _{int}	0.0248	0.0333	0.0380	0.0408	0.0725
Completeness to θ [%]	99.1	99.5	99.7	99.3	0.0725
Data/restraints/parameters	7218/0/362	7377/0/379	14452/0/544	10772/0/532	9966/0/544
Goodness-of-fit on F ²	1.037	1.030	1.058	1.040	1.058
Final R indices [I>2 σ (I)]	R1 = 0.0424,	R1 = 0.0368,	R1 = 0.0239,	R1 = 0.0395,	R1 = 0.0389,
	wR2 = 0.1062	wR2 = 0.0940	wR2 = 0.0560	wR2 = 0.0817	wR2 = 0.0961
R indices (all data)	R1 = 0.0555,	R1 = 0.0436,	R1 = 0.0282,	R1 = 0.0486,	R1 = 0.0546,
	wR2 = 0.1116	wR2 = 0.0975	wR2 = 0.0580	wR2 = 0.0842	wR2 = 0.1022

Largest diff. peak and	0.533 and -0.235	0.360 and -0.286	0.970 and -1.041	3.441 and -1.514	0.739 and -0.380
hole [eÅ ⁻³]					

Figure 1S. ¹H NMR spectrum of 2-[Ph₂P=O]C₆H₄NHC(tBu)=N(2,6- $iPr_2C_6H_3$) (1).

Figure 2S. ¹³C NMR spectrum of 2-[Ph₂P=O]C₆H₄NHC(tBu)=N(2,6- $iPr_2C_6H_3$) (1).

Figure 3S. ³¹P NMR spectrum of 2-[Ph₂P=O]C₆H₄NHC(tBu)=N(2,6- $iPr_2C_6H_3$) (1).

Figure 4S. IR spectrum of -[Ph₂P=O]C₆H₄NHC(*t*Bu)=N(2,6-*i*Pr₂C₆H₃) (1).

Figure 5S. ¹H NMR spectrum of 2-($Ph_2P=S$)C₆H₄NHC(tBu)=N(2,6-Me₂C₆H₃) (2).

Figure 6S. ¹³C NMR spectrum of 2-(Ph₂P=S)C₆H₄NHC(tBu)=N(2,6-Me₂C₆H₃) (2).

Figure 7S. ³¹P NMR spectrum of 2-(Ph₂P=S)C₆H₄NHC(tBu)=N(2,6-Me₂C₆H₃) (2).

Figure 8S. IR spectrum of $2-(Ph_2P=S)C_6H_4NHC(tBu)=N(2,6-Me_2C_6H_3)$ (2).

Figure 9S. ¹H NMR spectrum of 2-[Ph₂P=N(Ph)]C₆H₄NHC(tBu)=N(2,6-Me₂C₆H₃) (**3**).

Figure 10S. ¹³C NMR spectrum of 2-[Ph₂P=N(Ph)]C₆H₄NHC(tBu)=N(2,6-Me₂C₆H₃) (**3**).

Figure 11S. ³¹P NMR spectrum of 2-[Ph₂P=N(Ph)]C₆H₄NHC(*t*Bu)=N(2,6-Me₂C₆H₃) (**3**).

Figure 12S. IR spectrum of 2-[Ph₂P=N(Ph)]C₆H₄NHC(*t*Bu)=N(2,6-Me₂C₆H₃) (**3**).

Figure 13S. ¹H NMR spectrum of $2-[Ph_2P=N(2,6-Me_2C_6H_3)]C_6H_4NHC(tBu)=N(2,6-Me_2C_6H_3)$ (4).

Figure 14S. ¹³C NMR spectrum of 2-[Ph₂P=N(2,6-Me₂C₆H₃)]C₆H₄NHC(tBu)=N(2,6-Me₂C₆H₃) (4).

Figure 15S. ³¹P NMR spectrum of $2-[Ph_2P=N(2,6-Me_2C_6H_3)]C_6H_4NHC(tBu)=N(2,6-Me_2C_6H_3)$ (4).

Figure 16S. IR spectrum of 2-[Ph₂P=N(2,6-Me₂C₆H₃)]C₆H₄NHC(*t*Bu)=N(2,6-Me₂C₆H₃) (4).

Figure 17S. ¹H NMR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Y(CH_2SiMe_3)_2$ (5).

Figure 18S. ¹³C NMR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Y(CH_2SiMe_3)_2$ (5).

Figure 19S. ³¹P NMR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Y(CH_2SiMe_3)_2$ (5).

Figure 20S. IR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Y(CH_2SiMe_3)_2$ (5).

Figure 21S. IR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Er(CH_2SiMe_3)_2$ (6).

Figure 22S. ¹H NMR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (7).

Figure 23S. ¹³C NMR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (7).

Figure 24S. ³¹P NMR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (7).

Figure 25S. IR spectrum of $\{2-[Ph_2P=O]C_6H_4NC(tBu)N(2,6-iPr_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (7).

Figure 26S. ¹H NMR spectrum of $\{2-[Ph_2P=N(Ph)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Y(CH_2SiMe_3)_2$ (8).

Figure 27S. ¹³C NMR spectrum of $\{2-[Ph_2P=N(Ph)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Y(CH_2SiMe_3)_2$ (8).

Figure 28S. ³¹P NMR spectrum of $\{2-[Ph_2P=N(Ph)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Y(CH_2SiMe_3)_2$ (8).

Figure 29S. IR spectrum of $\{2-[Ph_2P=N(Ph)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Y(CH_2SiMe_3)_2$ (8).

Figure 30S. ¹H NMR spectrum of $\{2-[Ph_2P=N(Ph)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (9).

Figure 31S. ¹³C NMR spectrum of $\{2-[Ph_2P=N(Ph)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (9).

Figure 32S. ³¹P NMR spectrum of $\{2-[Ph_2P=N(Ph)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (9).

Figure 33S. IR spectrum of $\{2-[Ph_2P=N(Ph)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (9).

Figure 34S. ¹H NMR spectrum of $\{2-[Ph_2P=N(2,6-Me_2C_6H_3)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (10).

Figure 35S. ¹³C NMR spectrum of $\{2-[Ph_2P=N(2,6-Me_2C_6H_3)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (10).

Figure 36S. ³¹P NMR spectrum of {2-[Ph₂P=N(2,6-Me₂C₆H₃)]C₆H₄NC(*t*Bu)N(2,6-Me₂C₆H₃)}Lu(CH₂SiMe₃)₂ (**10**).

Figure 37S. IR spectrum of $\{2-[Ph_2P=N(2,6-Me_2C_6H_3)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Lu(CH_2SiMe_3)_2$ (10).

Figure 38 S. ¹³C NMR spectrum (50 MHz, CDCl₃) of PIP sample (Table 1, Entry 5)

15.03.05 6 Y 001

S 2300/S 2400 Processing Start Time(min) = 6,412 Processing Stop Time(min) = 10,844 Number of Slices = 266 Weight Average Molecular Weight = 164977 Number Average Molecular Weight = 76611 Z Average Molecular Weight = 264561 Z+1 Average Molecular Weight = 398447 Polydispersity index = 2,153 Peak Molecular Weight = 174421 Z Average / Weight Average = 1,604 Z+1 Average / Weight Average = 2,415

Figure 39 S. GPC of PIP sample (Table 1, Entry 5)

Figure 40 S. ¹H NMR spectrum (200 MHz, CDCl₃) of PIP sample (Table 1, Entry 9)

Figure 41 S. ¹³C NMR spectrum (50 MHz, CDCl₃) of PIP sample (Table 1, Entry 9)

S 2300/S 2400 Processing Start Time(min) = 5,695 Processing Stop Time(min) = 10,844 Number of Slices = 309 Weight Average Molecular Weight = 718511 Number Average Molecular Weight = 206739 Z Average Molecular Weight = 1910615 Z+1 Average Molecular Weight = 5022317 Polydispersity index = 3,475 Peak Molecular Weight = 616302 Z Average / Weight Average = 2,659 Z+1 Average / Weight Average = 6,990

Figure 42 S. GPC of PIP sample (Table 1, Entry 9)

Figure 43 S. ¹³C NMR spectrum (50 MHz, CDCl₃) of PIP sample (Table 1, Entry 18)

S 2300/S 2400						
P	rocessing	g Start	Tim	ne (mi)	n) =	6,729
1	Processin	ig Stop	Tim	ne (mi)	n) =	10,758
		Number	of	Slic	es =	242
Weight	Average	Molecul	lar	Weig	ht =	118439
Number	Average	Molecul	ar	Weig	ht =	48634
Z	Average	Molecul	ar	Weigi	ht =	232923
Z+1	Average	Molecul	ar	Weig	ht =	389899
	Poly	dispers	ity	ind	ex =	2,435
	Peak	Molecul	ar	Weig	ht =	95056
Z	Average	/ Weigh	it A	vera	ge =	1,967
Z+1	Average	/ Weigh	it A	vera	ge =	3,292

Figure 44 S. GPC of PIP sample (Table 1, Entry 18)

Figure 45 S. ¹³C NMR spectrum (50 MHz, CDCl₃) of PIP sample (Table 2, Entry 1)

Figure 46 S. GPC of PIP sample (Table 2, Entry 1)

Figure 47 S. ¹³C NMR spectrum (50 MHz, CDCl₃) of PIP sample (Table 2, Entry 3)

Figure 48 S. GPC of PIP sample (Table 2, Entry 3)

Figure 49 S. ¹³C NMR spectrum (50 MHz, CDCl₃) of PIP sample (Table 3, Entry 3)

Figure 50 S. GPC of PIP sample (Table 3, Entry 3)

Figure 51 S. ¹³C NMR spectrum (50 MHz, CDCl₃) of PIP sample (Table 3, Entry 9)

Figure 52 S. GPC of PIP sample (Table 3, Entry 9)