Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Polymeric Cobalt(II) Thiolato Complexes – Syntheses, Structures and

Properties of ${}^{1}_{\infty}$ [Co(SMes)₂] and ${}^{1}_{\infty}$ [Co(SPh)₂NH₃].

Andreas Eichhöfer,*^{,abc} Gernot Buth^d

^a Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Campus Nord,

Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Tel. 49-(0)721-608-26371

Fax: 49-(0)721-608-26368

e-mail: andreas.eichhoefer@kit.edu

^b Lehn Institute of Functional Materials, Sun Yat-Sen University, Guangzhou 510275, China

^c Karlsruhe Nano Micro Facility (KNMF), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

^d Institut für Photonenforschung und Synchrotronstrahlung, Karlsruher Institut für Technologie (KIT), Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Content

Figure S1 Measured and simulated X-ray powder pattern of 1. Figure S2 Shortest intermolecular interactions in the crystal structure of 3. Figure S3 – S5 Measured and simulated X-ray powder pattern for 2 – 4. Figure S6 Plot of the magnetization *M* versus *T* for 2 at 4K. Figure S7 Plots of the reduced magnetization *M* versus *H*/*T* for 3. Figure S8 Plot of the magnetization *M* versus *T* for 4 at 4K. Figure S9 Thermogravimetric analysis of 3 under helium gas flow and in vacuum. Figure S10 X-ray powder pattern of the vacuum TGA product of 4. Figure S11 X-ray powder patterns of intermediate TGA products of 4.

List of compounds $Co(SPh)_2(1)$ $\int_{\infty}^{1} [Co(SMes)_2] (2).$ $[Co(SPh)_2(NH_3)_2] (3).$ $\int_{\infty}^{1} [Co(SPh)_2(NH_3)] (4).$

Figure S1 X-ray powder pattern for $Co(SPh)_2'(1)$ synthesized at rt (1a) and at 105 °C (1b).

Figure S2 Shortest intermolecular interactions in the crystal structure of $[Co(SPh)_2(NH_3)_2]$ (**3**) (Co: blue, S: yellow, N: green, C: grey, H: white; H atoms of the phenyl rings have been omitted) (Co····Co: pm, S····H pm).

Figure S3 Measured (black) and simulated (grey) X-ray powder patterns for $^{1}_{\infty}$ [Co(SMes)₂].

Figure S4 Measured (black) and simulated (grey) X-ray powder patterns for $[Co(SPh)_2(NH_3)_2]$ (3).

Figure S5 Measured (black) and simulated (grey) X-ray powder patterns for ${}^{1}_{\infty}$ [Co(SPh)₂(NH₃)] (4).

Figure S7 Plots of the reduced magnetization *M* versus H/T for $[Co(SPh)_2(NH_3)_2]$ (3) at different temperatures. The solid lines represent the calculated curves (eqn (1)) with the PHI program.¹

Figure S9 Thermogravimetric analysis of $[Co(SPh)_2(NH_3)_2]$ (3) under helium gas flow and in vacuum.

Figure S10 X-ray powder pattern of the vacuum TGA product of ${}^{1}_{\infty}$ [Co(SPh)₂(NH₃)] (4) heated to 555 °C compared to the theoretical peak pattern of the cobalt pentlandite structure from ref (1).

Figure S11 X-ray powder pattern of intermediate TGA products of $_{\infty}^{1}$ [Co(SPh)₂(NH₃)] (4) a) heated to 110 °C under vacuum (2K/min) and isothermal treatment for 1 hour b) same residue post-annealed under N₂ at 150 °C for 3 – 4 h..