Supporting Information

An unusual assembled Pb(II) meso-helicate showing the inert pair effect

María J. Romero,^a Rocío Carballido,^a Laura Rodríguez-Silva,^b Marcelino

Maneiro,^b G. Zaragoza,^c Ana M. González-Noya,^{*a} and Rosa Pedrido^{*a}

^aDepartamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, E-15782, Spain.

^bDepartamento de Química Inorgánica, Facultade de Ciencias, Universidade de Santiago de Compostela, Lugo, Galicia, E-27002, Spain.

^cUnidade de Difracción de Raios X, Edificio CACTUS, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela, Galicia, E-15782, Spain.

Contents:

Experimental section

Figures S1-S9

Tables S1-S4

Experimental

Materials

All solvents, 1, 3-diacetylbenzene, salicyloyl hydrazide and the lead metal plate (ca. 2x2 cm²) are commercially available and were used without further purification.

Physical Measurements

Elemental analysis of C, H and N were performed on a FISONS EA 1108 analyzer. ¹H and ¹³C/DEPT NMR spectra were recorded on a Varian Mercury 300 spectrometer and ²⁰⁷Pb NMR spectra were recorded on a Bruker AMX-500 spectrometer at 298 K, using DMSO-d₆ as deuterated solvent. Chemical shifts are expressed relative to tetramethylsilane (¹H and ¹³C NMR) and neat tetramethyllead using a saturated solution of PbPh₄ in CDCl₃ (-178 ppm) as an external reference (²⁰⁷Pb NMR). Infrared spectra were measured as KBr pellets on a BRUKER IFS-66V spectrophotometer in the range 4000-100 cm⁻¹. Electrospray ionisation (ESI- and ESI+) mass spectra were recorded on an API4000 Applied Biosystems mass spectrometer with Triple Cuadrupole analyser.

Crystal Structure Determinations

Colourless prismatic crystals of the lead(II) mesocate **2** were mounted on a glass fibre and used for data collection. Crystal data were collected at 100(2) K using a BRUKER APPEX-II CCD diffractometer. Graphite monochromated MoK(α) radiation ($\lambda = 0.71073$ Å) was used throughout. The data were processed with BRUKER SAINT ¹ and corrected for absorption using SADABS.² The structures were solved by SIR-97 ³ and refined by full-matrix least-squares techniques against *F*² using SHELXL-97.⁴ Positional and anisotropic atomic displacement parameters were refined for all heteroatoms. The water protons were located in a difference map and their positions, with distance restraints, were refined isotropically [Uiso(H) = 1.2Ueq(O)]. Other H atoms were included as fixed contributions riding on attached atoms with isotropic thermal parameters (1.2-1.5 times those of their carrier atoms). Criteria of a satisfactory complete analysis were the ratios of "*rms*" shift to standard deviation less than 0.001 and no significant features in the final difference maps. Molecular graphics were done with ORTEP⁵ and MERCURY.⁶ A summary of the crystal data of **2** is listed in Table S1. Significant bond

distances and angles for **2** are summarized in Table S2 and hydrogen bond parameters are listed in Table S3.

CCDC 1487152 contains the supplementary crystallographic data for complex **2**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via ww.ccdc.cam.ac.uk/data request.cif.

Synthesis of H₂L 1

0.21 g (1.30 mmol) of 1, 3-diacetylbenzene and 0.39 g (2.60 mmol) of salicyloyl hydrazide were dissolved in absolute ethanol (70 mL), and a catalytic amount of *p*-toluensulfonic acid (ca. 10 mg) was added to the mixture. The reaction was stirred under reflux with a Dean-Stark trap for 4 h (Scheme S1). Finally the solution was concentrated to a volume of *ca.* 20 mL and cooled down to 4 °C until the formation of a white product was observed. The solid was filtered off, washed with diethyl ether and dried under vacuum. Yield: 0.5 g (90%); m.p. 160-162 °C; E. A. (Found: C, 67.1; H, 5.1; N, 13.1; C₂₄H₂₂N₄O₄ required: C, 66.9; H, 5.2; N, 13.0; S; ESI-MS (*m/z*) 429.2 [H₂L-H]⁻; ¹H NMR (300 MHz, DMSO-d₆, ppm): δ 11.90 (s, 2H, OH), 11.38 (s, 2H, NH), 8.31 (s, 1H, H₅), 8.01 (d, 1H, *J* = 7.4 Hz, H₃), 7.90 (d, 1H, *J* = 7.3 Hz, H₆), 7.52 (t, 1H, *J* = 7.6 Hz, H₄), 7.42 (t, 1H, *J* = 7.2 Hz, H₇), 7.02-6.99 (m, 2H, H₈+ H₉), 2.37 (s, 6H, CH₃); ¹³C/DEPT NMR (126 MHz, DMSO-d₆, ppm): δ 162.1 (C=O), 152.1 (C=N), 156.5 (C_{ar}-OH), 138.1-117.3 (9C_{ar}), 14.1 (CH₃); IR (KBr, cm⁻¹): v(OH) 3440, v(NH) 3261, v(Amide I) 1631, v(C=N) 1604, v(Amide II) 1541, v(Amide III) 1311.

Scheme S1: Synthesis of the ligand H₂L 1.

Synthesis of [Pb₂(L)₂] 2

The lead(II) complex was synthesized by an electrochemical procedure. The electrochemical cell can be represented as Pt(-) | H₂L + CH₃CN | Pb(+). The ligand H₂L (0.05 g, 0.116 mmol) was dissolved in warm acetonitrile (*ca.* 80 cm³). Once the solution reached room temperature, a small amount of supporting electrolyte (tetraethylammonium perchlorate) was added. The solution was electrolysed at 10 mA and 13 V for 38 min. The yellow solid was filtered off, washed with diethyl ether and dried under vacuum. Caution! Perchlorate salts are potentially explosive and should be handled with care. Yield: 0.2 g (74%); Ef= 1.0 mol F⁻¹; E. A. (Found: C, 44.44; H, 3.07; N, 8.63; C₄₈H₄₀N₈O₈Pb₂ required: C, 45.35; H, 3.17; N, 8.81; ESI⁺-MS (*m/z*) 637.0 [ML+H]⁺, 1272.8 [M₂L₂+H]⁺; ¹H NMR (500 MHz, DMSO-d₆, 298 K, ppm): 14.45 (s, 4H, OH), 7.80-7.63 (m, 4H), 7.97-7.86 (m, 6H), 7.47-7.22 (m, 6H), 6.89 (d, 4H, *J* = 7.1 Hz), 6.83-6.73 (m, 4H), 2.29 (s, 12H); ²⁰⁷Pb NMR (500 MHz, DMSO-d₆, 298 K, ppm): -770.7; IR (KBr, cm⁻¹): v(OH) 3440, v(Amide I) 1632, v(C=N) 1605, v(Amide II) 1540, v(Amide III) 1311. Recrystallization from the mother liquors afforded X-ray quality crystals of **2** (CCDC 1487152).

Figure S1: ¹H NMR spectrum of the ligand H₂L (1) recorded in DMSO-d₆.

Figure S2: ${}^{13}C$ NMR spectrum of the ligand H₂L (1) recorded in DMSO-d₆.

Figure S3: ORTEP diagram of the Pb(II) mesocate **2** showing ellipsoids at 50% level. Hydrogen atoms have been omitted for clarity.

Figure S4: Stick representation of the mesocate **2** showing the antiparallel voids created by the stereochemically active lone pair in each Pb(II) ion.

Figure S5: Classical hydrogen bond interactions observed in the mesocate $[Pb_2(L)_2]$ 2.

Figure S6: Chair-like conformation adopted by the 16-membered metallacycle in the Pb(II) mesocate **2**.

Figure S7: Pb···aryl centroid distances (Å) and angles(°) for the strong Pb··· π interaction in mesocate **2**.

Figure S8: Intermolecular $CH\cdots\pi$ and Pb(II) lone pair $\cdots\pi$ interactions established between molecules of mesocate $[Pb_2(L)_2]$ **2**.

[Pb ₂ (L) ₂] 2						
Empirical Formula	$C_{48}H_{40}N_8O_8Pb_2$	Ζ	4			
Formula weight/ g·mol-1	1271.26	Volume / Å ³	2136.77 (11)			
Space group	<i>P</i> 21/ <i>c</i>	Density/g⋅cm ⁻³	1.976			
Crystal system	Monoclinic	μ /mm ⁻¹	7.94			
Crystal size / mm	0.15 x 0.11 x 0.10	GOF	1.01			
a/Å	12.4274 (4)	F(000)	1224			
b/Å	10.6731 (3)	Reflections collected	25486			
c/Å	17.2083 (5)	Independent reflections [R _{int}]	4708 [0.063]			
α/°	90	Data/restraints/parameters	4708/ 2/ 304			
β/°	110.584 (2)	$R_1, wR_2 [I > 2\sigma(I)]$	0.0333 [0.0612]			
γ/°	90	R_1 , wR_2 (all data)	0.0545 [0.0676]			
Temperature/ K	100	$\Delta \rho$ max and min /e·Å ⁻³	1.18 and -0.77			

Table S1: Crystallographic parameters of the lead(II) complex $[Pb_2(L)_2]$

Table S2: Selected bond distances [Å] and angles [°] of the lead(II) complex $[Pb_2(L)_2]$ 2

[Pb ₂ (L) ₂] 2							
C(1)-O(1)	1.327(6)	N(1)-N(2)	1.396(6)	O(2)-Pb(1)	2.261(4)		
C(20)-O(4)	1.351(6)	N(4)-N(3)	1.407(6)	N(2)-Pb(1)	2.520(4)		
N(1)-N(2)	1.396(6)	C(7)-O(2)	1.322(6)	O(3)-Pb(1)	2.260(4)		
N(4)-N(3)	1.407(6)	C(18)-O(3)	1.276(6)	N(3)-Pb(1)	2.593(4)		
C(9)-N(2)	1.290(6)	C(7)-N(1)	1.312(7)				
C(17)-N(3)	1.290(7)	C(18)-N(4)	1.314(7)				
C(1)-O(1)-H(1O)	109.50	N(4)-N(3)-C(17)	114.90(4)	O(2)-Pb-N(3) ⁱ	88.44(13)		
С(20)-О(4)-Н(4О)	104.00(4)	N(1)-N(2)-Pb	113.30(3)	N(2)-Pb-O(3) ⁱ	84.62(13)		
C(7)-N(1)-N(2)	112.90(4)	N(4)-N(3)-Pb ⁱ	111.60(3)	O(2)-Pb-O(3) ⁱ	87.96(14)		
C(18)-N(4)-N(3)	113.60(4)	C(7)-O(2)-Pb	118.60(3)	N(2)-Pb-N(3) ⁱ	142.77(13)		
N(2)-C(9)-C(10)	116.20(5)	C(18)-O(3)-Pb ⁱ	121.90(4)	O(3) ⁱ -Pb-N(3) ⁱ	65.98(13)		
N(3)-C(17)-C(14)	120.10(5)	N(1)-C(7)-O(2)	126.80(5))	O(2)-Pb-N(2)	67.27(13)		
N(1)-N(2)-C(9)	117.40(4)	N(4)-C(18)-O(3)	126.70(5)				

Symmetry operation: i = -x, -y, -z

[Pb ₂ (L) ₂] 2							
D-H··· A	D-H (Å)	H…A (Å)	D…A (Å)	D-H…A (<)			
O(1)-H(1)…N(1)	0.8196	1.8192	2.545(7)	146.88			
O(4)-H(4A)…N(4)	0.82(3)	1.84(4)	2.583(7)	149(5)			
C(5)-H(5)-O(2)	0.9294	2.4505	2.776(7)	100.60			
C(15) ⁱ -H(15) ⁱ O(3)	0.9310	2.3086	3.119(6)	145.27			

Table S3: Classical and non-classical hydrogen bond interactions observed in the crystal packing of the Pb(II) mesocate 2.

Symmetry operations: i = -x, -y, -z

Table S4: Intermolecular $CH \cdots \pi$ interactions involved in the 3D zig-zag packing of mesocate 2

C-H···Ring	Distance (Å)
C(13)-H(13)···C(19)-C(24)-C(23)-C(22)-C(21)-C(20)	2.680
C(3)-H(3)···C(19)-C(24)-C(23)-C(22)-C(21)-C(20)	3.261

References

1 SAINT, Siemens Area detector integration software, Bruker AXS Inc., Madison, WI, USA, 2003.

2 G. M. Sheldrick, SADABS, Program for Scaling and Correction of Area Detector Data, University of Göttingen, Germany, 1996.

3 A. Altomare, C. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, M. C. Burla, G. Polidori, M. Camalli, R. Spagna, *SIR97*. University of Bari, Italy, 1997.

4 G. M. Sheldrick, Acta Cryst., 2008, A64, 112.

5 L. J. Farrugia, ORTEP-3 for Windows, J. Appl. Cryst., 1997, 30, 565.

6 C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, MERCURY CSD 2.0 *J. Appl. Cryst.*, 2008, **41**, 466.