Tuning of azine derivatives for selective recognition of Ag⁺ with *in vitro* tracking of endophytic bacteria in rice root tissue

Abhijit Ghosh^a, Sangita Adhikari^a, Sabyasachi Ta^a, Avishek Banik^b, Tushar Kanti Dangar^b, Subhra

Kanti Mukherjee^c, Jesús Sanmartín Matalobos^{d*}, Paula Brandão,^e Vítor Félix^{e,f*} and Debasis Das^{*a}

^aDepartment of Chemistry, The University of Burdwan, Burdwan, West Bengal, India. E-mail: ddas100in@yahoo.com; Fax: +91-342-2530452; Tel: +91-342-2533913

^bMicrobiology Laboratory, Crop production division, ICAR- Central Rice Research Institute. Cuttack, Odisha, India.

^cDepartment of Microbiology, The University of Burdwan, Burdwan, West Bengal, India.

^dDepartamento de Química Inorgánica, Facultad de Química, Avda. Das Ciencias s/n, 15782 Santiago de Compostela, Spain.

^eDepartment of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.

^fDepartment of Medical Sciences, iBiMED-Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal.

Figures Index

Fig. S1 Effect of pH on the emission intensities of (A) A10 ($\lambda_{ex} = 410 \text{ nm}$; $\lambda_{em} = 508 \text{ nm}$) and (B) A	A 11
$(\lambda_{ex} = 440 \text{ nm}; \lambda_{em} = 553 \text{ nm}) (20 \ \mu\text{M})$ before and after addition Ag+ (30 equiv.).	3
Fig. S2 Effect of Ag ⁺ (600 μ M) on the emission spectrum of (A) A10 and (B) A11 (20 μ M) in	
methanol	3
Fig. S3 Job's plot for determination of stoichiometry of the adduct of (A) A10 and (B) A11 with A	4g+ 4
Fig. S4 ESI-MS spectrum of the Ag ⁺ complex of A10 in methanol	4
Fig. S5 ESI-MS spectrum of the Ag ⁺ complex of A11 in methanol	5
Fig. S6 Changes in the emission spectrum of (A) A10 and (B) A11 (20 μ M in methanol-water (4: v/v) upon addition of AgClO ₄ (600 μ M)	1, 5
Fig. S7 Emission response of the Ag ⁺ complexes of A10 and A11 in aqueous-methanol	6
Fig. S8 Effect of Ag ⁺ (100 μ M) on the emission spectrum of A10a (10 μ M, λ_{ex} , 445 nm; λ_{em} , 535 n	m)
in methanol-water (4: 1, v/v).	6
Fig. S9 Emission intensities of A10 (20 μM, methanol– water (4 : 1, v/v, 0.1 M HEPES buffer, pH	I
7.4, λ_{ex} , 410 nm; λ_{em} , 508 nm) as a function of added Ag ⁺ (0- 600 μ M). Linear region of the plot	
(right)	6
Fig. S10 Emission intensities of A11 (20 μM, methanol– water (4 : 1, v/v, 0.1 M HEPES buffer, p	Н
7.4, λ_{ex} , 440 nm; λ_{em} , 553 nm) as a function of added Ag ⁺ (0- 600 μ M). Linear region of the plot	
(right)	7
Fig. S11 Emission intensities of (A) A10 (20 μ M, λ_{ex} , 410 nm; λ_{em} , 508 nm, from Fig. 6A); (B) A1	1
$(20 \mu\text{M}, \lambda_{ex}, 440 \text{nm}; \lambda_{em}, 553 \text{nm}$ from Fig. 6B) as a function of added Ag ⁺ in methanol– water (4	: 1,
v/v), 0.1 M HEPES buffer, pH 7.4	7
Fig. S12 Hill plot for determination of binding constant of (A) A10 and (B) A11 towards Ag ⁺ in 4:	1
methanol-water (data used from Fig.6A and 6B)	7
Fig. S13 Effect of common cations on the emission intensities of (A) [A10+Ag ⁺] system (λ_{ex} , 410 m	nm;
λ_{em} , 508 nm) and (B) [A11+Ag ⁺] system (λ_{ex} , 440 nm; λ_{em} , 553 nm) (methanol– water, 4 : 1, v/v, 0.	.1
M HEPES buffer, pH 7.4)	8
Fig. S14 Mass spectrum of LL	8
Fig. S15 FTIR spectrum of LL	9
Fig. S16 Mass spectrum of X3	9
Fig. S17 ¹ H NMR spectrum of A10 in CDC13	10
Fig. S18 ¹³ C NMR spectrum of A10 in CDCl3	10
Fig. S19 Mass spectrum of A10	.11
Fig. S20 FTIR spectrum of A10	.11
Fig. S21 ¹ H NMR spectrum of A11 in CDC13	12
Fig. S22 ¹³ C NMR spectrum of A11 in CDCl3	. 12
Fig. S23 Mass spectrum of A11	. 13
Fig. S24 FTIR spectrum of A11	. 13
Fig. S25 ¹ H NMR spectrum of A10a in CDC13	.14
Fig. S26 Mass spectrum of A10a	.14
Fig. S27 FTIR spectrum of A10a	. 15
Fig. S28 FTIR spectrum of [A10- Ag ⁺] system	. 15
Fig. S29 FTIR spectrum of [A11- Ag ⁺] system	. 16

Tables Index

Table S1 Crystal data and selected refinement details of LL, A11 and A10a	16
Table S2 Crystal data and selected refinement details of Ag(I) complexes	17
Table S3 Select bond lengths (Å) and bond angles (°) of Ag(I) complexes	18

Scheme S1 Synthetic protocol of the probes

Fig.S1 Effect of pH on the emission intensities of (A) A10 ($\lambda_{ex} = 410 \text{ nm}$; $\lambda_{em} = 508 \text{ nm}$) and (B) A11 ($\lambda_{ex} = 440 \text{ nm}$; $\lambda_{em} = 553 \text{ nm}$) (20 μ M) before and after addition Ag⁺ (30 equiv.)

Fig.S2 Effect of Ag^+ (600 $\mu M)$ on the emission spectrum of (A) A10 and (B) A11 (20 $\mu M)$ in methanol

Fig.S3 Job's plot for determination of stoichiometry of the adduct of (A) A10 and (B) A11 with Ag⁺

Fig.S4 ESI-MS spectrum of the Ag^+ complex of A10 in methanol

Fig.S5 ESI-MS spectrum of the Ag^+ complex of A11 in methanol

Fig.S6 Changes in the emission spectrum of (A) A10 and (B) A11 (20 μ M in methanol-water (4: 1, v/v) upon addition of AgClO₄ (600 μ M)

Fig.S7 Effect of Ag⁺ (100 μ M) on the emission spectrum of A10a (10 μ M, λ_{ex} , 445 nm; λ_{em} , 535 nm) in methanol-water (4: 1, v/v)

Fig.S8 Emission intensities of A10 (20 μ M, methanol– water (4 : 1, v/v, 0.1 M HEPES buffer, pH 7.4, λ_{ex} , 410 nm; λ_{em} , 508 nm) as a function of added Ag⁺ (0- 600 μ M). Linear region of the plot (right)

Fig.S9 Emission intensities of A11 (20 μ M, methanol– water (4 : 1, v/v, 0.1 M HEPES buffer, pH 7.4, λ_{ex} , 440 nm; λ_{em} , 553 nm) as a function of added Ag⁺ (0- 600 μ M). Linear region of the plot (right)

Fig.S10 Emission intensities of (A) A10 (20 μ M, λ_{ex} , 410 nm; λ_{em} , 508 nm, from Fig. 6A); (B) A11 (20 μ M, λ_{ex} , 440 nm; λ_{em} , 553 nm from Fig. 6B) as a function of added Ag⁺ in methanol– water (4 : 1, v/v), 0.1 M HEPES buffer, pH 7.4

Fig.S11 Hill plot for determination of binding constant of (A) A10 and (B) A11 towards Ag^+ in 4:1 methanol-water (data used from Fig.6A and 6B)

Fig.S12 Effect of common cations on the emission intensities of (A) $[A10 + Ag^+]$ system (λ_{ex} , 410 nm; λ_{em} , 508 nm) and (B) $[A11+Ag^+]$ system (λ_{ex} , 440 nm; λ_{em} , 553 nm) (methanol– water, 4 : 1, v/v, 0.1 M HEPES buffer, pH 7.4)

Fig.S13 Mass spectrum of LL

Fig.S14 FTIR spectrum of LL

Fig.S17 ¹³C NMR spectrum of A10 in CDCl₃

Fig.S18 Mass spectrum of A10

Fig.S21 ¹³C NMR spectrum of A11 in CDCl₃

Fig.S22 Mass spectrum of A11

Fig.S25 Mass spectrum of A10a

Fig.S26 FTIR spectrum of A10a

Fig.S28 FTIR spectrum of [A11- Ag⁺] system

Compound	LL	A11	A10a
Empirical formula	$C_{18}H_{22}N_4$	$C_{24}H_{21}N_3$	C ₂₀ H ₁₉ N ₃ O
Formula weight	294.39	351.44	317.38
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	<i>P</i> 2 ₁ /c	$P2_{1}/n$	<i>P</i> 2 ₁ /c
a /Å	5.9874(4)	11.0729(5)	14.6785(9)
b /Å	7.3745(6)	6.3772(3)	6.2745(4)
c /Å	18.9986(15)	26.6135(12)	19.1494(12)
β /º	90.499(5)	98.155(3)	107.356(4)
$V/Å^3$	838.83(11)	1860.28(15)	1683.36(19)
Ζ	2	4	4
ρ_{calc}/gcm^{-3}	1.166	1.255	1.252
μ/mm^{-1}	0.071	0.075	0.079
<i>F</i> (000)	316.0	744.0	672.0
Crystal size /mm ³	0.18 x 0.10 x 0.04	0.20 x 0.13 x 0.06	0.17 x 0.10 x 0.04
θ range for data collection /°	3.50-28.38	3.55-26.60	1.45-24.78°
Index ranges	-7≤h≤7, -9≤k≤9, - 25≤l≤23	-13≤h≤13, -7≤k≤7, -33≤l≤32	-17≤h≤17, -7≤k≤7, - 22≤l≤22
Reflections collected	14229	27818	21778
Independent reflections	2074 [$R_{int} = 0.0288$]	3847 [$R_{int} = 0.0341$]	2890 [$R_{int} = 0.0666$]
Data/restraints/parameters	2074/0/103	3847/0/247	2890/0 /224
Goodness-of-fit on F^2	1.040	1.035	1.005
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0475, wR_2 = 0.1406$	$R_1 = 0.0446, wR_2 = 0.1155$	$R_1 = 0.0504, wR_2 = 0.1349$
Final R indexes [all data]	$R_1 = 0.0761, wR_2 = 0.1665$	$R_1 = 0.0800, wR_2 = 0.1335$	$R_1 = 0.0963, wR_2 = 0.1645$
Largest diff. peak/hole /eÅ-3	0.17/-0.12	0.15/-0.12	0.16/-0.15

Table S1 Crystal data and selected refinement details of ligands LL, A11 and A10a.

Compound	[Ag2(LL)2(NO3)2].CH2Cl2	$[\operatorname{Ag}_n(\operatorname{A11})_n(\operatorname{H}_2\operatorname{O})_n(\operatorname{NO}_3)_n]$	[Ag(A10)(NO ₃)]
Empirical formula	$C_{55}H_{68}Ag_2Cl_2N_{14}O_6$	$C_{24}H_{21.55}AgN_4O_{3.27}$	C40H38AgN7O3
Formula weight	1307.87	526.23	772.64
Crystal system	Triclinic	Monoclinic	monoclinic
Space group	PĪ	<i>P</i> 2 ₁ /c	<i>C</i> 2/c
a /Å	9.7677(6)	7.425(5)	18.5211(5)
b /Å	11.6665(6)	26.399(5)	14.6350(5)
c /Å	13.4972(8)	10.871(5)	13.6223(4)
$\alpha /^{o}$	71.209(2)	(90)	(90)
eta /°	76.812(2)	100.611(5)	111.121(2)
γ /°	79.526(2)	(90)	(90)
$V/Å^3$	1407.87(14)	2094.4(18)	3444.36(19)
Z	1	4	4
$ ho_{\rm calc}/{ m gcm}^{-3}$	1.543	1.669	1.490
μ /mm ⁻¹	0.854	1.000	0.636
<i>F</i> (000)	672	1067	1592
Crystal size /mm ³	0.14x0.06x0.03	0.20x0.16x0.05	0.16x0.10x0.08
θ range for data collection /°	2.08-30.62	1.54-28.28	1.82-29.20
Index ranges	-13≤h≤13, -16≤k≤16, - 19≤l≤19	-9≤ <i>h</i> ≤9, -34≤ <i>k</i> ≤35, -14≤ <i>l</i> ≤14	-25≤ <i>h</i> ≤25, - 19≤ <i>k</i> ≤20, -16≤ <i>l</i> ≤18
Reflections collected	66638	39403	22310
Independent reflections	8626 [$R_{\text{int}} = 0.0313$]	5190 [$R_{\rm int} = 0.0384$]	4655 [$R_{\rm int} = 0.0397$]
Data/restraints/parameters	8626/0/376	5190/0/319	4655/0/234
Goodness-of-fit on F^2	1.044	1.131	1.032
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0255, wR_2 = 0.0644$	$R_1 = 0.0414, wR_2 = 0.0875$	$R_1 = 0.0409, wR_2 = 0.0974$
Final <i>R</i> indexes [all data]	$R_1 = 0.0320, wR_2 = 0.0669$	$R_1 = 0.0549, wR_2 = 0.0919$	$R_1 = 0.0594, wR_2 = 0.1064$
Largest diff. peak/hole /eÅ-3	0.54/-0.78	1.02/-0.52	1.13/-0.79

 $\label{eq:crystal} \textbf{Table S2} \ \textbf{Crystal data and selected refinement details of Ag(I) complexes.}$

Complex [Ag(A10)(NO ₃)]				
Ag(1)-O(11)	2.595(2)	$Ag(1)-O(11)^{a}$	2.595(2)	
Ag(1)-N(2)	2.210(2)	$Ag(1)-N(2)^{a}$	2.210(2)	
O(11)-Ag(1)-N(2)	102.40(7)	O(11)-Ag(1)-N(2) ^a	110.29(7)	
$N(2)-Ag(1)-N(2)^{a}$	143.97(11)	$O(11)^{a}$ -Ag(1)-N(2)	110.29(7)	
$O(11)^{a}$ -Ag(1)-N(2) ^a	102.40(7)	O(11)-Ag(1)-O(11) ^a	49.57(9)	
Complex [Ag ₂ (LL) ₃ (NO ₃) ₂]				
Ag(1)-O(11)	2.4820(13)	Ag(1)-O(12)	2.5996(14)	
Ag(1)-N(2)	2.2311(12)	Ag(1)-N(5)	2.2600(11)	
O(11)-Ag(1)-O(12)	50.310(4)	O(12)-Ag(1)-N(2)	117.46(5)	
O(11)-Ag(1)-N(5)	112.48(4)	O(12)-Ag(1)-N(5)	103.59(4)	
O(11)-Ag(1)-N(2)	108.91(4)	N(2)-Ag(1)-N(5)	134.36(4)	
Complex [Ag _n (A11) _n (H ₂ O) _n (N	$[O_3)_n]$			
Ag(1)-O(11)	2.564(3)	Ag(1)-N(2)	2.344(2)	
Ag(1)-O(12)	2.460(3)	Ag(1)-N(3)	2.292(2)	
$Ag(1)-N(2)^{a}$	2.344(2)			
O(11)-Ag(1)-O(12)	51.34(12)	O(11)-Ag(1)-N(3)	93.24(9)	
O(12)-Ag(1)-N(3)	116.32(10)	O(12)-Ag(1)-N(2) ^a	106.61(10)	
$O(11)-Ag(1)-N(2)^a$	114.97(9)	N(2) ^{<i>a</i>} -Ag(1)-N(3)	137.07(8)	

Table S3 Select bond lengths (Å) and bond angles (°) of Ag(I) complexes

^{a)}Stands for 1-*x*, *y*, 1/2-*z* in [Ag(A10)(NO₃)]; and for *x*, 5/2-*y*, -1/2+*z* in [Ag_n(A11)_n(H₂O)_n(NO₃)_n]