Electronic Supplementary Information

for

N-H···O and N-H···Cl Supported 1D Chains of Heterobimetallic Cu^{II}/Ni^{II}- Sn^{IV} Cocrystals

Susanta Hazra,^{a,*} Ricardo Meyrelles,^a Adilia Januário Charmier,^{a,b} Patrícia Rijo,^{c,d} M. Fátima C. Guedes da Silva^{a,*} and Armando J. L. Pombeiro^{a,*}

^a Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001, Lisbon, Portugal. E-mail: h.susanta@gmail.com; fatima.guedes@tecnico.ulisboa.pt and pombeiro@tecnico.ulisboa.pt

^b ULHT, Universidade Lusófona, Campo Grande 376, Lisbon, 1749-024, Portugal

^c Center for Research in Biosciences and Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias,1749–024 Lisboa, Portugal

^d Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649–003 Lisboa, Portugal

Scheme S1 Preparation of cocrystals salts, cocrystals and salts by the metalloligand and the selfassembly approaches.

Scheme S2. Chemical diagram of a family of related H₂L Schiff bases.

Compounds	D–H···A	H···A	D···A	D–H…A	Symmetry	
	N3–H3C····Cl2 i	2.32	3.201	172.0		
	N3-H3A…O1	2.09	2.827	140.0	<i>i</i>) x, y, 1+z	
1	N3-H3B…O2	2.18	2.834	131.0		
	N3-H3A…O3	2.15	2.891	141.0		
	N3−H3B…O4	2.12	2.920	151.0		
	N3–H3C····Cl3 i	2.44	3.259	157.0		
2	N3-H3A…O1	2.01	2.760	143.0	<i>i</i>) x, 1+y, z; <i>ii</i>) 1-x, 1-y, 1-z	
	N3−H3B···O2	2.13	2.803	135.0		
	N3−H3A…O3	2.13	2.856	139.0		
	N3−H3B…O4	2.12	2.880	147.0		
	O5−H5M···Cl3 ^{<i>ii</i>}	2.474	3.316	162.0		
3	N3−H3C···Cl2	2.35	3.227	166.0	_	
	N3−H3A…O1	2.16	2.886	137.0		
	N3−H3B…O2	2.15	2.867	137.0		
	N3−H3A…O3	2.05	2.824	143.0		
	N3−H3B…O4	2.06	2.822	142.0		
	N3–H3A····Cl2 ^{i}	2.52	3.301	148.0		
	N3−H3A…O1	2.27	2.840	121.0		
4	N3-H3B…O2	1.97	2.788	149.0	<i>i</i>) 1–x,1–y,–z	
	N3−H3A…O3	1.95	2.815	160.0		
	N3-H3B…O4	2.12	2.795	131.0		
	O5−H5M···Cl2	2.39	3.261	171.0		

Table S1 Hydrogen bonds distances (Å) and angles (°) in 1–4

Fig. S1 Schematic presentation of the encapsulation of a chain of $(H_2ED)^{2+} \cdot [SnCl_6]^{2-}$ species in the metallo-Schiff base pockets of [ML].

Fig. S2 Supramolecular 1D chain in 2–4 supported by non-covalent interactions.

Fig. S3 Entrapping of 1D chains of $(H_2ED)^{2+} \cdot [SnCl_6]^{2-}$ adducts by mononuclear complexes in 1–4. Methanol molecules in 2 and 4 are omitted for clarity.

Fig. S4 Entrapping of 1D chain of $(H_2ED)^{2+} \cdot [(R1)_2SnCl_4]^{2-}$ adducts by the mononuclear [CuL] complexes in $(H_2ED)^{2+} \cdot 2[CuL] \cdot [(R1)_2SnCl_4]^{2-}$ (L = L¹, R = Me, R1 = Me, Et, *n*-Bu and Ph; L = L², R = Et, R1 = Ph; ED = 1,2-ethylenediamine; excluding the solvent of crystallization). (Reference 9c of the main text).

	1	2	3	4
Formula	$C_{38}H_{46}Cl_6Cu_2N_6O_8Sn$	$C_{44}H_{62}Cl_6Cu_2N_6O_{10}Sn$	C ₃₈ H ₄₆ Cl ₆ Ni ₂ N ₆ O ₈ Sn	C ₄₄ H ₆₂ Cl ₆ Ni ₂ N ₆ O ₁₀ Sn
FW	1173.28	1293.46	1163.62	1283.80
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
a/Å	10.466(4)	10.5572(4)	10.4892(12)	10.3172(4)
b/Å	11.006(5)	11.5990(4)	10.9238(12)	11.7507(5)
c/Å	11.089(4)	12.9106(5)	11.1384(12)	12.8219(6)
α/°	80.040(15)	112.4350(10)	90.216(4)	114.355(2)
β/°	62.536(18)	111.101(2)	117.436(4)	108.037(2)
γ/°	79.168(15)	96.452(2)	99.734(4)	96.323(2)
$V/Å^3$	1107.7(8)	1304.86(9)	1111.5(2)	1294.78(10)
Ζ	1	1	1	1
<i>T</i> /K	298(2)	150(2)	298(2)	150(2)
<i>θ/</i> °	2.266 - 26.478	2.475 - 25.744	2.229 - 25.692	2.246 - 25.723
μ (Mo K α)/mm ⁻¹	1.930	1.650	1.814	1.568
$\rho_{\rm calcd}/{\rm g~cm^{-3}}$	1.759	1.646	1.738	1.646
F(000)	590	658	588	656
Index ranges	-13 <h<13< td=""><td>-12<h<12< td=""><td>-12<h<12< td=""><td>-12<h<12< td=""></h<12<></td></h<12<></td></h<12<></td></h<13<>	-12 <h<12< td=""><td>-12<h<12< td=""><td>-12<h<12< td=""></h<12<></td></h<12<></td></h<12<>	-12 <h<12< td=""><td>-12<h<12< td=""></h<12<></td></h<12<>	-12 <h<12< td=""></h<12<>
	-13 <k<13< td=""><td>-14<<i>k</i><14</td><td>-13<k<13< td=""><td>-14<<i>k</i><14</td></k<13<></td></k<13<>	-14< <i>k</i> <14	-13 <k<13< td=""><td>-14<<i>k</i><14</td></k<13<>	-14< <i>k</i> <14
	-13< <i>l</i> <13	-15<1<15	-13 13</td <td>-15<l<15< td=""></l<15<></td>	-15 <l<15< td=""></l<15<>
Rfs. collected	17669	22907	18140	23394
Rfs. unique/observed	4531/3256	4949/3918	4215/2855	4879/4091
R _{int}	0.0732	0.0488	0.0842	0.0312
$R_1^{a}/wR_2^{b} [I > 2\sigma(I)]$	0.0507/0.1106	0.0292/0.0637	0.0509/0.1094	0.0267/0.0577
R_1^{a}/wR_2^{b} [for all F_0^2]	0.0815/0.1237	0.0466/0.0696	0.0930/0.1265	0.0388/0.0629
GOF on F^2	1.026	1.019	1.033	1.058

Table S2 Crystallographic data for 1–4