Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Ethylene glycol intercalated monometallic layered double hydroxide based on iron as an

efficient bifunctional catalyst

Rajamani Nagarajan*, Pankaj Gupta, Poonam Singh and Pinki Chakraborty

Materials Chemistry Group

Department of Chemistry, University of Delhi

Delhi 110007 INDIA

Fig. S1 PXRD pattern of the product from the reaction of FeCl₃ and urea employing water as the solvent under hydrothermal conditions.

Fig. S2 (A) PXRD pattern of EG intercalated $Fe^{II} - Fe^{III} - LDH$ (i), after soaking 50 mg of the catalyst in XO (ii), MO (iii) and MB (iv) dye solutions (1×10⁻⁴ M and for 24 h) at room temperature. (B) PXRD patterns of these samples in low angle region (2-20°) of the product after soaking the soaking experiments in XO (i), (ii) in MO (ii) and MB (iii).

Fig. S3 (a) PXRD pattern of the EG intercalated Fe^{II} - Fe^{III} - LDH synthesized and (b) after its use as a catalyst (first cycle) for the oxidative degradation of XO.

Fig. S4 (a) PXRD pattern of the EG intercalated Fe^{II} - Fe^{III} - LDH synthesized and (b) after its use as a catalyst (first cycle) for the reduction of p-nitrophenol.

Table S1 Summary of the rate constants (k) obtained using our sample (EG intercalated Fe

 (II) - Fe (III) - LDH)

Substrate	1 st cycle	2 nd cycle	3 rd cycle	4 th cycle
Xylenol orange	$348 \times 10^{-3} \text{min}^{-1} \\ (5.8 \times 10^{-3} \text{s}^{-1})$	330 × 10 ⁻³ min ⁻¹ (5.5 × 10 ⁻³ s ⁻¹)	$204 \times 10^{-3} \text{ min}^{-1}$ $(3.4 \times 10^{-3} \text{ s}^{-1})$	$\frac{108 \times 10^{-3} \text{min}^{-1}}{(1.8 \times 10^{-3} \text{s}^{-1})}$
<i>p</i> -nitrophenol	258.6 × 10 ⁻³ min ⁻¹ (4.31 × 10 ⁻³ s ⁻¹)	$251.4 \times 10^{-3} \text{ min}^{-1}$ (4.19 × 10 ⁻³ s ⁻¹)	198 × 10 ⁻³ min ⁻¹ (3.3 × 10 ⁻³ s ⁻¹)	114 × 10 ⁻³ min ⁻¹ (1.9 × 10 ⁻³ s ⁻¹)