Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting Information for

## Macrocyclic Ligands Decorated Ordered Mesoporous Silicas with Large-Pore and Short-Channel Characteristics for Effective Separation of Lithium Isotopes: Synthesis, Adsorptive Behavior Study and DFT Modeling

Yuekun Liu<sup>a,†</sup>, Fei Liu<sup>c,†</sup>, Gang Ye<sup>a,b,\*</sup>, Ning Pu<sup>a</sup>, Fengcheng Wu<sup>a</sup>, Zhe Wang<sup>a</sup>,

Xiaomei Huo<sup>a</sup>, Jian Xu<sup>c</sup> and Jing Chen<sup>a,b,\*</sup>

<sup>a</sup> Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
 <sup>b</sup> Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, China.
 <sup>c</sup> Faculty of Chemical Science and Engineering, China University of Petroleum, Beijing, 100084, China.



Figure S1. Influence of acidity in aqueous phases on the Li(I) adsorption capacity of SBA-NH-B15C5

| Pseudo-second-order<br>model <sup>a</sup> |       |                      | Pseudo-second-order model                        |                       |                              |                                                 | Intraparticle diffusion<br>model <sup>b</sup>                 |       |             |
|-------------------------------------------|-------|----------------------|--------------------------------------------------|-----------------------|------------------------------|-------------------------------------------------|---------------------------------------------------------------|-------|-------------|
| $k_l$ (min <sup>-1</sup> )                | $R^2$ | $q_{t,cal}$ $(mg/g)$ | k2<br>(g mg <sup>-1</sup><br>min <sup>-1</sup> ) | <i>R</i> <sup>2</sup> | q <sub>t,cal</sub><br>(mg/g) | h<br>(mg g <sup>-1</sup><br>min <sup>-1</sup> ) | k <sub>3</sub><br>(mg g <sup>-1</sup><br>min <sup>1/2</sup> ) | $R^2$ | C<br>(mg/g) |
| 0.039                                     | 0.697 | 0.84                 | 0.096                                            | 0.998                 | 2.38                         | 0.54                                            | 0.108                                                         | 0.461 | 1.29        |
|                                           |       |                      |                                                  |                       |                              |                                                 | k                                                             |       |             |

 Table S1 Kinetic parameters fitted by using different kinetic models.

<sup>a</sup> The pseudo-first-order model is written as  $\log(q_e - q_t) = \log(q_e) - \frac{k_1}{2.303}t$ , where  $q_e$  and  $q_t$  (mg/g) are the adsorption capacity of Li(I) at equilibrium and at time t (min), respectively,  $k_1$  (min<sup>-1</sup>) is the rate constant.

<sup>b</sup> The intraparticle diffusion model is written as  $q_t = k_3 t^{1/2} + C$ , where  $k_3 (\text{mg g}^{-1} \text{min}^{1/2})$  is the rate constant,  $q_t (\text{mg/g})$  is the adsorption capacity of Li(I) at time t (min), and C represents the thickness of the boundary layer.

**Table S2**. Enthalpy changes  $\Delta H^0$ , entropy changes  $\Delta S^0$  and Gibbs free energy change  $\Delta G^0$  of the Li(I) adsorption reaction  $\operatorname{Li}_{aq}^+ + nL_s + X_{aq}^- = (\operatorname{Li}^+ nL)X_s^-$ .  $L_s$  represents the SBA-NH-B15C5 OMSs.

| Samula       | Temperature | $\Delta H^0$ | $\Delta S^0$ | $\Delta G^0$ |
|--------------|-------------|--------------|--------------|--------------|
| Sample       | (K)         | (kJ/mol)     | J/(mol K)    | (kJ/mol)     |
|              | 288.15      | -26.2        | -89.3        | -0.46        |
| SBA-NH-B15C5 | 298.15      |              |              | 0.42         |
|              | 311.15      |              |              | 1.59         |

| Sorbents                                             | Experimental conditions                            | α     | Ref.      |
|------------------------------------------------------|----------------------------------------------------|-------|-----------|
| B15C5 impregnated silica resin                       | T=35 °C, 0.55 M Li(I) in<br>methanol/HCl (V/V=3/7) | 1.013 | 1         |
| B15C5 bonded phenol resin                            | T=35 °C, 0.6 M Li(I) in methanol/HCl<br>(V/V=3/7)  | 1.033 | 2         |
| Azacrown merrifield resin                            | T=25 °C, 1000 ppm Li(I) in DI water                | 1.001 | 3         |
| N <sub>4</sub> O <sub>2</sub> azacrown ion exchanger | T=20 °C, 1000 ppm Li(I) in DI water                | 1.038 | 4         |
| $N_4S_2$ azacrown ion exchanger                      | T=25 °C, 500 ppm Li(I) in DI water                 | 1.034 | 5         |
| B15C5 bonded merrifield resin                        | T=20 °C, 485 ppm Li(I) in DI water                 | 1.026 | 6         |
| IL17-5SGs & IL17-5IRs                                | T=25 °C, 20 mM Li(I)                               | 1.048 | 7         |
| IL15SGs                                              | Room temperature, 20 mM Li(I)                      | 1.046 | 8         |
| SBA-NH-B15C5                                         | T=15 °C, 2.0 g/L Li(I) in DI water                 | 1.049 | This work |

**Table S3.** Comparison of separation factor of lithium isotopes by the SBA-NH-B15C5 and other

 sorbents reported in the literature.

## **Supporting references**

- 1. Y. Ban, M. Nomura and Y. Fujii, J. Nucl. Sci. Technol., 2002, 39, 279-281.
- K. Otake, T. Suzuki, H. Kim, M. Nomura and Y. Fujii, *J. Nucl. Sci. Technol.*, 2006, 43, 419-422.
- D. W. Kim, B. K. Kim, S. R. Park, N. S. Lee, Y. S. Jeon and K. Y. Ô. L. Choi, J. Radioanal. Nucl. Ch., 1998, 232, 257-259.
- 4. D. W. Kim, Y. H. Jang, N. S. Lee, Y. S. Chung, K. Y. Kim, S. U. Park and C. S. Kim, *J. Radioanal. Nucl. Ch.*, 1999, **240**, 155-158.
- D. W. Kim, C. S. Kim, J. S. Jeon, J. S. Kim and N. S. Lee, *J. Radioanal. Nucl. Ch.*, 1999, 241, 379-382.
- D. W. Kim, H. J. Kim, J. S. Jeon, K. Y. Choi and Y. S. Jeon, *J. Radioanal. Nucl. Ch.*, 2000, 245, 571-574.
- X. Sun, L. Gu, D. Qiu, D. Ren, Z. Gu and Z. Li, J. Radioanal. Nucl. Ch., 2015, 303, 2271-2282.
- W. Zhou, X. Sun, L. Gu, F. Bao, X. Xu, C. Pang, Z. Gu and Z. Li, *J. Radioanal. Nucl. Ch.*, 2014, **300**, 843-852.