Supporting Information

Construction of Copper Chains with New Fluorescent GuanidinoFunctionalized Naphthyridine Ligands

Christoph Krämer, Simone Leingang, Olaf Hübner, Elisabeth Kaifer, Hubert Wadepohl, Hans-Jörg Himmel*

Fig. S1 Hydrogen-bonded dimer of the protonated amino precursor to the guanidino ligands. A double-potential minimum exists with the proton on one or the other molecule. Hydrogen atoms attached to carbon omitted for clarity. Vibrational ellipsoids drawn at the 50% probability level. Selected bond distances (in \AA): N1-C1 1.355(2), N1-C2 1.338(2), N2-C1 $1.373(2), \mathrm{N} 2-\mathrm{C} 81.349(2), \mathrm{N} 3-\mathrm{C} 21.383(2), \mathrm{N} 4-\mathrm{C} 81.331(2), \mathrm{N} 1 \cdots \mathrm{~N} 4{ }^{\prime} 2.883(1), \mathrm{N} 2 \cdots \mathrm{~N} 2$ ' 2.995(1).

UV/Vis

Fig. S2 Comparison of the UV/Vis spectrum of $\mathbf{1}$ in different solvents $\left(c=2.0 \cdot 10^{-5} \mathrm{~mol} \mathrm{l}^{-1}\right)$.

Fig. S3 Comparison of the UV/Vis spectrum of $\mathbf{3}$ in different solvents $\left(c=2.0 \cdot 10^{-5} \mathrm{~mol} \mathrm{l}^{-1}\right)$.

Fig. S4 Top: UV/Vis spectra of $\mathbf{1 , 2}$ and $\mathbf{3}$ in $\mathrm{CH}_{3} \mathrm{OH}\left(c=2.0 \cdot 10^{-5} \mathrm{~mol} \mathrm{l}^{-1}\right.$). Bottom: Normalized emission spectra of $\mathbf{1 , 2}$ and $\mathbf{3}$ in $\mathrm{CH}_{3} \mathrm{OH}\left(\mathrm{c}=2.0 \cdot 10^{-5} \mathrm{~mol} \mathrm{l}^{-1}\right)$.

Fig. S5 CV of $\mathbf{1}$ (potential vs $\mathrm{Fc} / \mathrm{Fc}^{+}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, with $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ as supporting electrolyte, scan speed of $100 \mathrm{mV} \mathrm{s}^{-1}$.

Fig. S6 CV of $\mathbf{2}$ (potential vs $\mathrm{Fc} / \mathrm{Fc}^{+}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, with $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ as supporting electrolyte, scan speed of $100 \mathrm{mV} \mathrm{s}^{-1}$.

Fig. $\mathbf{S 7} \mathbf{C V}$ of $\mathbf{3}$ (potential vs $\mathrm{Fc} / \mathrm{Fc}^{+}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, with $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ as supporting electrolyte, scan speed of $100 \mathrm{mV} \mathrm{s}^{-1}$.

NMR

Fig. S8 ${ }^{1} \mathrm{H}$ NMR ($199.87 \mathrm{MHz}, 298.0 \mathrm{~K}$) spectrum of $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ in $d 6$-DMSO, showing the presence of uncoordinated $\mathrm{CH}_{3} \mathrm{CN}$ molecules (signal at $\delta=2.07 \mathrm{ppm}$).

Fig. S9 ${ }^{1} \mathrm{H}$ NMR $(199.87 \mathrm{MHz})$ spectra of $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at $25{ }^{\circ} \mathrm{C}$ (top) and $-35{ }^{\circ} \mathrm{C}$ (bottom), indicating coordination of $\mathrm{CH}_{3} \mathrm{CN}$ molecules at low temperature.

Experimental details

I) Substitution of $\mathrm{CH}_{3} \mathrm{CN}$ in $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$
a) $7.30 \mathrm{mg}(0.06 \mathrm{mmol}, 4.0 \mathrm{eq}) 4$-(dimethylamino)pyridine was added to a solution of 20.0 $\mathrm{mg}(0.02 \mathrm{mmol}, 1.0 \mathrm{eq})\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ in 4 ml CH 33 CN . The solution was stirred for 3 d at room temperature. Then, the solvent was removed in vacuo and a brown solid was obtained. No reaction could be observed by ${ }^{1} \mathrm{H}$ NMR and MS.
b) $3.72 \mathrm{mg}(0.03,2.0 \mathrm{eq})$ 2-nitropyridine was added to a solution of $20.0 \mathrm{mg}(0.02 \mathrm{mmol}, 1.0$ eq) $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ in 4 ml CH 33 CN. After the solution was stirred for 1 h at room temperature, the solvent was removed. As ${ }^{1} \mathrm{H}$ NMR showed that no reaction took place, the solid was redissolved in $\mathrm{CH}_{3} \mathrm{CN}$ and the solution was heated at reflux for 3 h . Analytical data showed that no reaction occurred.
c) $34.5 \mathrm{mg}(0.02 \mathrm{mmol}, 1.0 \mathrm{eq})\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ was dissolved in 3 ml benzonitrile. The solution was stirred for 3 d at room temperature. Then, the excess of benzonitrile was removed under reduced pressure. The resulting yellow solid was washed with hexane (3x5 $\mathrm{ml})$ and redissolved in $10 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, insoluble solid was filtered off. The insoluble solid was identified as $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. X-Ray structure analysis of the crystals obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution revealed a mixture of $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}$, $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}$ and $\quad\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\left(\mathrm{CuCl}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2} \quad($ see \quad Fig. S11). Crystal data for $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}, \quad\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}, \quad\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\left(\mathrm{CuCl}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$, $\mathrm{C}_{110} \mathrm{H}_{172} \mathrm{~B}_{10} \mathrm{Cl}_{8} \mathrm{Cu}_{14} \mathrm{~F}_{40} \mathrm{~N}_{48} \cdot 6 \mathrm{CH}_{2} \mathrm{Cl}_{2}: M \mathrm{r}=4717.76,0.10 \times 0.08 \times 0.06 \mathrm{~mm}^{3}$, triclinic, space group $P^{\overline{1}}, a=12.7803(3), b=15.1583(4), c=23.8968(6) \AA, \alpha=100.103(2)^{\circ}, \beta=$ $100.290(2)^{\circ}, \gamma=91.496(2)^{\circ}, V=4476.5(2) \AA^{3}, Z=1, d_{\text {calc }}=1.750 \mathrm{Mg} \cdot \mathrm{m}^{-3}$, Mo K_{α} radiation $(\lambda=0.71073 \AA), \mu=2.024 \mathrm{~mm}^{-1}, T=120(1) \mathrm{K}, \theta$-range 3.2 to 26.4°. Reflections measd. 165973, indep. 18252 [$\left.R_{\text {int }}=0.0833\right]$, obs. 14220. Final R indices $[I>2 \sigma(I)]: R(F)=0.0486$, $w R\left(F^{2}\right)=0.1096, G o o F=1.021$.

Fig. S10 ${ }^{1} \mathrm{H}$ NMR $(199.87 \mathrm{MHz})$ spectra of $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ in the presence of 2 equivalents pyridine in $\mathrm{CD}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$ (top) and $-35^{\circ} \mathrm{C}$ (bottom).
a)

b)

Fig. S11 Molecular structure of $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\left(\mathrm{CuCl}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}, \quad\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}\right.$ and $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} . \mathrm{BF}_{4}^{-}$anions, solvent molecules and hydrogen atoms attached to carbon omitted for clarity. Vibrational ellipsoids drawn at the 50% probability level. Selected bond distances (in \AA) and angles (in ${ }^{\circ}$):
a) View of the unit cell containing the three complexes $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\left(\mathrm{CuCl}_{2}\right)_{2}\right]^{2+},\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]^{4+}$ and $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{2}\right]^{4+}$.
b) Structure of $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\left(\mathrm{CuCl}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$: $\mathrm{Cu} 41 \cdots \mathrm{Cu} 41^{\text {‘ }}$ 2.4520(9), $\mathrm{Cu} 41 \cdots \mathrm{Cu} 42$ 2.4855(7), Cu41‥Cu43 2.9358(7), Cu41-Cl41’ 2.4732(11), Cu42-Cl42 2.4057(11), Cu43-Cl41 2.1301(12), Cu43-Cl42 2.1316(12), Cu41-N41 1.955(3), Cu41-N42 1.958(3), Cu42-N43 1.949(3), Cu42-N46 1.949(3), N41-C41 1.350(5), N41-C48 1.369(5), N42C47 1.346(5), N42-C48‘ 1.369(5), N43-C41 1.363(5), N43-C49 1.369(5), N44-C49 1.337(5), N45-C49 1.335(5), N46-C47 1.373(5), N46-C54 1.341(5), N47-C54 1.342(6), N48-C54 1.355(6), Cu41‘‥Cu41‥Cu42 139.44(3), Cu43-C141-Cu41‘ 87.58(4), Cu43-Cl42-Cu42 83.51(4), Cl41-Cu43-Cl42 161.04(5), N41-Cu41-N42 161.42(13), N46-Cu42N43 140.25(14).
c)

c) Structure of $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}: \mathrm{Cu} 1 \cdots \mathrm{Cu} 1^{‘} 2.4162(9), \mathrm{Cu} 1 \cdots \mathrm{Cu} 2$ 2.4255(7), $\mathrm{Cu} 1-\mathrm{N} 1$ 1.921(3), Cu1-N2 1.917(3), Cu2-N3 1.869(3), Cu2-N6 1.866(3), N1-C1 1.351(5), N1-C8 1.375(5), N2-C7 1.355(5), N2-C8 1.372(5), N3-C1 1.368(5), N3-C9 1.377(5), N4-C9 1.326(5), N5-C9 1.341(5), N6-C7 1.374(5), N6-C14 1.367(5), N7-C14 1.340(5), N8-C14 1.331(5), $\mathrm{Cu} 1{ }^{〔} \cdots \mathrm{Cu} 1{ }^{\cdots} \mathrm{Cu} 2$ 168.69(4), $\mathrm{N} 1 ‘-\mathrm{Cu} 1-\mathrm{N} 2$ 173.44(14), $\mathrm{N} 6-\mathrm{Cu} 2-\mathrm{N} 3 ‘ 170.52(14)$.
d) Structure of $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}: \mathrm{Cu} 21 \cdots \mathrm{Cu} 21^{‘}$ 2.4087(10), $\mathrm{Cu} 21 \cdots \mathrm{Cu} 22$ 2.4187(7), Cu21-N21‘ 1.937(3), Cu21-N22 1.931(3), Cu22-N23‘ 1.867(3), Cu22-N26 1.868(3), N21-C21‘ 1.356 (5), N21-C28 1.372(5), N22-C27 1.350(5), N22-C28 1.376(5), N23-C21 1.363(5), N23-C29 1.373(5), N24-C29 1.330(5), N25-C29 1.333(5), N26-C27 1.367(5), $\quad \mathrm{N} 26-\mathrm{C} 34 \quad 1.370(5), \quad \mathrm{N} 27-\mathrm{C} 34 \quad 1.333(5), \quad \mathrm{N} 28-\mathrm{C} 34 \quad 1.334(5)$, $\mathrm{Cu} 21^{‘} \cdots \mathrm{Cu} 21 \cdots \mathrm{Cu} 22 \quad 165.13(4), \quad \mathrm{N} 21{ }^{〔}-\mathrm{Cu} 21-\mathrm{N} 22 \quad 171.79(15), \quad \mathrm{N} 26-\mathrm{Cu} 22-\mathrm{N} 23{ }^{\prime}$ 169.61(14).

Experimental details

II) Reaction of $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ with bis(triphenylphosphoranylidene)ammonium chloride (PPNCl)
$23.6 \mathrm{mg}(0.02 \mathrm{mmol}, 1.0 \mathrm{eq})$ of $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ and 19.4 mg of PPNCl were dissolved in $5 \mathrm{ml} \mathrm{CH}_{3} \mathrm{CN}$. The solution was stirred for 2 h at room temperature. No reaction was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum (see Fig. S14) and with ESI ${ }^{+}$-MS.

Fig. S12 ${ }^{1} \mathrm{H}$ NMR ($199.87 \mathrm{MHz}, 295.0 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$) spectra of $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ before (red) and after (black) the addition of PPNCl.

Fig. S13 Top: UV/Vis spectra of $\left[\mathrm{Cu}_{3}(\mathbf{1})_{2} \mathrm{Br}_{2}\right] \mathrm{Br}$ in $\mathrm{CH}_{3} \mathrm{CN}\left(\mathrm{c}=1.0 \cdot 10^{-5} \mathrm{~mol} \mathrm{l}^{-1}\right)$. Bottom: Normalized emission spectra of $\left[\mathrm{Cu}_{3}(\mathbf{1})_{2} \mathrm{Br}_{2}\right] \mathrm{Br}$ in $\mathrm{CH}_{3} \mathrm{CN}\left(\mathrm{c}=1.0 \cdot 10^{-5} \mathrm{~mol} \mathrm{l}^{-1}\right)$.

Fig. S14 Visualization of calculated minimum structures of $\left[(\mathrm{CuCl})_{2} 3\right](\mathrm{B} 3 \mathrm{LYP} / \mathrm{SV}(\mathrm{P}))$.

Table S1 Comparison of experimental and calculated bond distances (in \AA) and angles

| |
| :--- | :---: | :---: | :---: | :---: |

Fig. $\mathbf{S 1 5}$ UV/Vis spectra of $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}$ in $\mathrm{CH}_{3} \mathrm{CN}$ solution at $20^{\circ} \mathrm{C}$ and $-35^{\circ} \mathrm{C}$.

Fig. S16 Theoretical UV/Vis spectrum from TD-DFT calculations (B3LYP/def2-SV(P)) for $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]^{4+}$. The spectrum was simulated with Gaussian functions of a halfwidth of 20 nm .

Experimental details

III) Catalysis

1-benzyl-4-phenyl-1H-1,2,3-triazole
$5.9 \mathrm{mg}(4.2 \mu \mathrm{~mol}, 1.0 \mathrm{~mol} \%)\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ were dissolved in $0.5 \mathrm{ml} d 6$-DMSO. $50 \mu \mathrm{l}$ ($0.46 \mathrm{mmol}, 1.04 \mathrm{eq}$) phenylacetylene and $55 \mu \mathrm{l}$ ($0.44 \mathrm{mmol}, 1.0 \mathrm{eq}$) benzyl azide were added. The solution was stirred overnight. ${ }^{1} \mathrm{H}$ NMR showed complete reaction. The NMR spectrum is shown in Fig. S17. ${ }^{1} \mathrm{H}$ NMR ($199.87 \mathrm{MHz}, d 6-\mathrm{DMSO}, 295.0 \mathrm{~K}$): $\delta=5.61$ (s, 2 H , - CH_{2}-), 7.24-7.43 (m, $8 \mathrm{H}, \mathrm{C} H_{\text {arom }}$), $7.82\left(\mathrm{~d}, \mathrm{~J}=6.86 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{\text {arom. }}\right.$) ppm, $8.60(\mathrm{~s}, 1 \mathrm{H},-$ $\mathrm{CH}-$).

Fig. S17 ${ }^{1} \mathrm{H}$ NMR (199.87 MHz , 295.0 K) spectrum of 1-benzyl-4-phenyl-1H-1,2,3triazole in d_{6}-DMSO.

Fig. S18 CV of $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}$ (potential vs $\mathrm{Fc} / \mathrm{Fc}^{+}, \mathrm{CH}_{3} \mathrm{CN}$ solution, with $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ as supporting electrolyte, scan speed of $500 \mathrm{mV} \mathrm{s}^{-1}$.

Fig. S19 CV of $\left[\mathrm{Cu}_{4}(\mathbf{2})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}$ (potential vs $\mathrm{Fc} / \mathrm{Fc}^{+}, \mathrm{CH}_{3} \mathrm{CN}$ solution, with $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ as supporting electrolyte, scan speed of $500 \mathrm{mV} \mathrm{s}^{-1}$.

Fig. S20 Top: UV/Vis spectra of $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\left(\mathrm{CuCl}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ in $\mathrm{CH}_{3} \mathrm{CN}\left(\mathrm{c}=1.2 \cdot 10^{-5} \mathrm{~mol} \mathrm{l}^{-1}\right)$. Bottom: Normalized emission spectra of $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\left(\mathrm{CuCl}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ in $\mathrm{CH}_{3} \mathrm{CN}\left(\mathrm{c}=1.2 \cdot 10^{-5}\right.$ mol l-1).

Experimental details

IV) Oxidation of $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$
a) $22.2 \mathrm{mg}(0.02 \mathrm{mmol}, 1.0 \mathrm{eq})\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ was dissolved in 4 ml CH 33 CN .9 .28 $\mathrm{mg}(0.04 \mathrm{mmol}, 2.0 \mathrm{eq})$ ferrocenium tetrafluoroborate were added. The solution was stirred for 4 h at room temperature. Then, the solution was removed under reduced pressure. No reaction observed. The reaction was repeated heating the solution at reflux for 3.5 h . Also this time no reaction took place.
b) $15.3 \mathrm{mg}(0.01 \mathrm{mmol}, 1.0 \mathrm{eq})\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ was dissolved in $3 \mathrm{ml} \mathrm{CH} H_{3} \mathrm{CN} .2 .70$ $\mathrm{mg}(0.02 \mathrm{mmol}, 2.0 \mathrm{eq})$ benzoquinone were added. The solution was first stirred for 1 h at room temperature, then 1.5 h at $50^{\circ} \mathrm{C}$ and finally at $80^{\circ} \mathrm{C}$ overnight. Afterwards, the solvent was removed in vacuo receiving a brownish solid. No reaction observed in ${ }^{1} \mathrm{H}$ NMR spectrum.
c) $17.9 \mathrm{mg}(0.01 \mathrm{mmol}, 1.0 \mathrm{eq})\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ was dissolved in 5 ml CH 33 CN and cooled down to $-35^{\circ} \mathrm{C}$. Then a solution of $1.5 \mathrm{mg}(0.01 \mathrm{mmol}, 1.0 \mathrm{eq}) \mathrm{NOBF}_{4}$ in $2 \mathrm{ml} \mathrm{CH}_{3} \mathrm{CN}$ was added dropwise. Thereby the solution turned colorless. After the addition was completed, the solution was stirred for 1 h at $-35^{\circ} \mathrm{C}$ and the solution turned slightly green. Finally, the solid was removed in vacuo. Analysis showed decomposition of the compound.
d) $20.0 \mathrm{mg}(0.01 \mathrm{mmol}, 1.0 \mathrm{eq})\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ were dissolved in $4.5 \mathrm{ml} \mathrm{CH} 3 \mathrm{CN}_{3} \mathrm{CN}$ solution of $5.6 \mathrm{mg}(0.03 \mathrm{mmol}, 2.0 \mathrm{eq})$ solved in $2.5 \mathrm{ml} \mathrm{CH}_{3} \mathrm{CN}$ were added dropwise. The solution was stirred for 30 min at room temperature. After 2 min of stirring, the color of the solution turned from yellow to colorless. After 30 min , the solvent was removed under reduced pressure and a slightly yellow solid was obtained. NMR analysis showed decomposition of the compound.
V) Reaction of $\mathrm{KCl} / \mathrm{CuCl}$ with $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$
$15.2 \mathrm{mg}(0.01 \mathrm{mmol}, 1.0 \mathrm{eq})\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}, 1.70 \mathrm{mg}(0.02 \mathrm{mmol}, 2.0 \mathrm{eq}) \mathrm{KCl}$ and $2.20 \mathrm{mg}(0.02 \mathrm{mmol}, 2.0 \mathrm{eq}) \mathrm{CuCl}$ were suspended in $4 \mathrm{ml} \mathrm{CH}_{3} \mathrm{CN}$. The reaction mixture was stirred overnight at $75^{\circ} \mathrm{C}$. After cooling to room temperature, the solvent was removed in vacuo. The obtained yellow solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in order to grow crystals,
insoluble solid was filtered off. However, no crystals were received and further analytical data showed that no reaction has occurred.

Fig. S21 Top: UV/Vis spectra of $\left[\mathrm{Cu}_{3}(\mathbf{1})_{3}\right]\left(\mathrm{I}_{5}\right)_{2}\left(\mathrm{I}_{3}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}\left(\mathrm{c}=1.1 \cdot 10^{-5} \mathrm{~mol} \mathrm{l}{ }^{-1}\right)$. Bottom:
Normalized emission spectra of $\left[\mathrm{Cu}_{3}(\mathbf{1})_{3}\right]\left(\mathrm{I}_{5}\right)_{2}\left(\mathrm{I}_{3}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}\left(\mathrm{c}=1.1 \cdot 10^{-5} \mathrm{~mol} \mathrm{l}^{-1}\right)$.

a)

c)

Fig. S22 Calculated minimum structures of a) $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]^{4+}$, b) $\left[\mathrm{Ag}_{4}(\mathbf{1})_{2}\right]^{4+}$ and c) $\left[\mathrm{Au}_{4}(\mathbf{1})_{2}\right]^{4+}$ (B3LYP/SV(P)).

Quantum chemical calculations

TD-DFT calculations were performed for $\left[\mathrm{Ag}_{4}(\mathbf{1})_{2}\right]^{4+}$ and $\left[\mathrm{Au}_{4}(\mathbf{1})_{2}\right]^{4+}$ to investigate, if the type of the metal atoms of the tetranuclear complex has influence on the electronic excitations. In particular, we were interested, if the exchange of the metal leads to a change of the nature of the low-lying transitions. The spectra are shown in Fig. S23. For $\left[\mathrm{Ag}_{4}(\mathbf{1})_{2}\right]^{4+}$, the two strong low-lying transitions are found at 350.5 and 343.4 nm , they are blue-shifted by 10 and 5 nm with respect to the $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]^{4+}$ positions. These are HOMO-1 \rightarrow LUMO and HOMO \rightarrow LUMO +1 transitions, and the orbitals again are combinations of the HOMOs or the LUMOs of the two ligands. The orbitals are shown in Fig. S24. For $\left[\mathrm{Au}_{4}(\mathbf{1})_{2}\right]^{4+}$, there are two strong low-lying transitions at 360.4 nm and 328.5 nm . These are transitions from the HOMO-1 to LUMO+1 and from the HOMO to LUMO+5 orbitals. The former transition again is a ligand centered transition involving essentially combinations of the HOMOs and LUMOs of the two ligands. However, the latter transition is a transition similar to the
transition of $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]^{4+}$ at 293 nm , involving the Au d orbitals. The orbitals are shown in Fig. S25. Thus for Au complex, the first strong transition involving the d orbitals is found distinctly red-shifted (35 nm) compared to the Cu complex. Interestingly, for the Ag complex there is no corresponding low-lying transition involving the d orbitals with a sizeable intensity.

Table S2 Selected calculated bond distances (in \AA) and angles (in ${ }^{\circ}$) for $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]^{4+}$, $\left[\mathrm{Ag}_{4}(\mathbf{1})_{2}\right]^{4+}$ and $\left[\mathrm{Au}_{4}(\mathbf{1})_{2}\right]^{4+}(\mathrm{B} 3 \mathrm{LYP} / \mathrm{SV}(\mathrm{P})$.

	$\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]^{4+}$	$\left[\mathrm{Ag}_{4}(\mathbf{1})_{2}\right]^{4+}$	$\left[\mathrm{Au}_{4}(\mathbf{1})_{2}\right]^{4+}$
$\mathrm{M}_{\text {terminal }} \ldots \mathrm{M}_{\text {central }}$	2.449	2.696	2.684
$\mathrm{M}_{\text {central }} \ldots \mathrm{M}_{\text {central }}$	2.426	2.664	2.633
$\mathrm{M}_{\text {central }}-\mathrm{N}$	1.972	2.226	2.156
$\mathrm{M}_{\text {terminal- }}-\mathrm{N}$	1.927	2.181	2.151
$\mathrm{~N}=\mathrm{C}$	1.386	1.380	1.392
$\mathrm{M}-\mathrm{M}-\mathrm{M}$	170.70	142.39	152.92

Fig. S23 Theoretical UV/Vis spectrum from TD-DFT calculations (B3LYP/def2-SV(P)) for $\left[\mathrm{Cu}_{4}(\mathbf{1})_{2}\right]^{4+}$ (top), $\left[\mathrm{Ag}_{4}(\mathbf{1})_{2}\right]^{4+}$ (center) and $\left[\mathrm{Au}_{4}(\mathbf{1})_{2}\right]^{4+}$ (bottom). Data was fitted as Gaussian curve with a half-width of 20 nm .

Fig. S24 Visualization of isodensity surfaces of orbitals of $\left[\mathrm{Ag}_{4}(\mathbf{1})_{2}\right]^{4+}$ involved in the electronic transitions.

Fig. S25 Visualization of isodensity surfaces of orbitals of $\left[\mathrm{Au}_{4}(\mathbf{1})_{2}\right]^{4+}$ involved in the electronic transitions.

